Physical Model of a Fractured Reservoir

Physical Model of a Fractured Reservoir PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The objectives of the physical modeling effort are to: (1) evaluate injection-backflow testing for fractured reservoirs under conditions of known reservoir parameters (porosity, fracture width, etc.); (2) study the mechanisms controlling solute transport in fracture systems; and (3) provide data for validation of numerical models that explicitly simulate solute migration in fracture systems. The fracture network is 0.57-m wide, 1.7-m long, and consists of two sets of fractures at right angles to one another with a fracture spacing of 10.2 cm. A series of injection-backflow tests, similar to those performed at the Raft River Geothermal field, was conducted. These included variable volume injection and injection-backflow tests with varying quiescent periods between injection and backflow. This latter series of tests was conducted with a range of flow fields passing through the model. recovery is related to the flow field in the physical model and model parameters. Longer quiescent times and greater flow fields result in a lower tracer recovery. A plot of the fractional tracer recovery against quiescent time results in a straight line. This relationship, combined with classical reservoir engineering data, can be used to predict aquifer flow rate and porosity from known injection volumes and tracer recovery.

Physical Model of a Fractured Reservoir

Physical Model of a Fractured Reservoir PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The objectives of the physical modeling effort are to: (1) evaluate injection-backflow testing for fractured reservoirs under conditions of known reservoir parameters (porosity, fracture width, etc.); (2) study the mechanisms controlling solute transport in fracture systems; and (3) provide data for validation of numerical models that explicitly simulate solute migration in fracture systems. The fracture network is 0.57-m wide, 1.7-m long, and consists of two sets of fractures at right angles to one another with a fracture spacing of 10.2 cm. A series of injection-backflow tests, similar to those performed at the Raft River Geothermal field, was conducted. These included variable volume injection and injection-backflow tests with varying quiescent periods between injection and backflow. This latter series of tests was conducted with a range of flow fields passing through the model. recovery is related to the flow field in the physical model and model parameters. Longer quiescent times and greater flow fields result in a lower tracer recovery. A plot of the fractional tracer recovery against quiescent time results in a straight line. This relationship, combined with classical reservoir engineering data, can be used to predict aquifer flow rate and porosity from known injection volumes and tracer recovery.

Embedded Discrete Fracture Modeling and Application in Reservoir Simulation

Embedded Discrete Fracture Modeling and Application in Reservoir Simulation PDF Author: Kamy Sepehrnoori
Publisher: Elsevier
ISBN: 0128196882
Category : Technology & Engineering
Languages : en
Pages : 306

Get Book Here

Book Description
The development of naturally fractured reservoirs, especially shale gas and tight oil reservoirs, exploded in recent years due to advanced drilling and fracturing techniques. However, complex fracture geometries such as irregular fracture networks and non-planar fractures are often generated, especially in the presence of natural fractures. Accurate modelling of production from reservoirs with such geometries is challenging. Therefore, Embedded Discrete Fracture Modeling and Application in Reservoir Simulation demonstrates how production from reservoirs with complex fracture geometries can be modelled efficiently and effectively. This volume presents a conventional numerical model to handle simple and complex fractures using local grid refinement (LGR) and unstructured gridding. Moreover, it introduces an Embedded Discrete Fracture Model (EDFM) to efficiently deal with complex fractures by dividing the fractures into segments using matrix cell boundaries and creating non-neighboring connections (NNCs). A basic EDFM approach using Cartesian grids and advanced EDFM approach using Corner point and unstructured grids will be covered. Embedded Discrete Fracture Modeling and Application in Reservoir Simulation is an essential reference for anyone interested in performing reservoir simulation of conventional and unconventional fractured reservoirs. - Highlights the current state-of-the-art in reservoir simulation of unconventional reservoirs - Offers understanding of the impacts of key reservoir properties and complex fractures on well performance - Provides case studies to show how to use the EDFM method for different needs

Multiphase Fluid Flow in Porous and Fractured Reservoirs

Multiphase Fluid Flow in Porous and Fractured Reservoirs PDF Author: Yu-Shu Wu
Publisher: Gulf Professional Publishing
ISBN: 0128039116
Category : Science
Languages : en
Pages : 420

Get Book Here

Book Description
Multiphase Fluid Flow in Porous and Fractured Reservoirs discusses the process of modeling fluid flow in petroleum and natural gas reservoirs, a practice that has become increasingly complex thanks to multiple fractures in horizontal drilling and the discovery of more unconventional reservoirs and resources. The book updates the reservoir engineer of today with the latest developments in reservoir simulation by combining a powerhouse of theory, analytical, and numerical methods to create stronger verification and validation modeling methods, ultimately improving recovery in stagnant and complex reservoirs. Going beyond the standard topics in past literature, coverage includes well treatment, Non-Newtonian fluids and rheological models, multiphase fluid coupled with geomechanics in reservoirs, and modeling applications for unconventional petroleum resources. The book equips today's reservoir engineer and modeler with the most relevant tools and knowledge to establish and solidify stronger oil and gas recovery. - Delivers updates on recent developments in reservoir simulation such as modeling approaches for multiphase flow simulation of fractured media and unconventional reservoirs - Explains analytical solutions and approaches as well as applications to modeling verification for today's reservoir problems, such as evaluating saturation and pressure profiles and recovery factors or displacement efficiency - Utilize practical codes and programs featured from online companion website

Fundamentals of Fractured Reservoir Engineering

Fundamentals of Fractured Reservoir Engineering PDF Author: T.D. van Golf-Racht
Publisher: Elsevier
ISBN: 0080868665
Category : Technology & Engineering
Languages : en
Pages : 729

Get Book Here

Book Description
In the modem language of reservoir engineering by reservoir description is understood the totality of basic local information concerning the reservoir rock and fluids which by various procedures are extrapolated over the entire reservoir. Fracture detection, evaluation and processing is another essential step in the process of fractured reservoir description. In chapter 2, all parameters related to fracture density and fracture intensity, together with various procedures of data processing are discussed in detail. After a number of field examples, developed in Chap. 3, the main objective remains the quantitative evaluation of physical properties. This is done in Chap. 4, where the evaluation of fractures porosity and permeability, their correlation and the equivalent ideal geometrical models versus those parameters are discussed in great detail. Special rock properties such as capillary pressure and relative permeability are reexamined in the light of a double-porosity reservoir rock. In order to complete the results obtained by direct measurements on rock samples, Chap. 5 examines fracturing through indirect measurements from various logging results. The entire material contained in these five chapters defines the basic physical parameters and indicates procedures for their evaluation which may be used further in the description of fractured reservoirs.

A Physically Based Numerical Approach for Modeling Fracture-matrix Interaction in Fractured Reservoirs

A Physically Based Numerical Approach for Modeling Fracture-matrix Interaction in Fractured Reservoirs PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
Modeling fracture-matrix interaction within a multiple-phase flow system is a key issue for fractured reservoir simulation. Commonly used mathematical models for dealing with such interactions employ dual- or multiple-continuum concepts, in which fractures and matrix are represented as overlapping, different, but interconnected continua, described by parallel sets of conservation equations. The conventional single-point upstream weighting scheme is most commonly used to estimate flow mobility for fracture-matrix flow. However, such a scheme may have serious limitations or flaws, which lead to unphysical solutions or significant numerical errors. To overcome the limitations of the conventional upstream weighting scheme, this paper presents a physically based modeling approach for estimating physically correct relative permeability in calculating multiphase flow between fractures and the matrix, using continuity of capillary pressure at the fracture-matrix interface. The proposed approach has been implemented into two multiphase reservoir simulators and verified using analytical solutions and laboratory experimental data. The new method is demonstrated to be accurate, numerically efficient, and easy to implement in dual- or multiple-continuum reservoir simulators.

Flow and Contaminant Transport in Fractured Rock

Flow and Contaminant Transport in Fractured Rock PDF Author: Jacob Bear
Publisher: Academic Press
ISBN: 0080916473
Category : Technology & Engineering
Languages : en
Pages : 575

Get Book Here

Book Description
In the past two or three decades, fractured rock domains have received increasing attention not only in reservoir engineering and hydrology, but also in connection with geological isolation of radioactive waste. Locations in both the saturated and unsaturated zones have been under consideration because such repositories are sources of heat and potential sources of groundwater contamination. Thus, in addition to the transport of mass of fluid phases in single and multiphase flow, the issues of heat transport and mass transport of components have to be addressed.

Geologic Analysis of Naturally Fractured Reservoirs

Geologic Analysis of Naturally Fractured Reservoirs PDF Author: Ronald A. Nelson
Publisher: Gulf Professional Publishing
ISBN: 9780872015777
Category : Science
Languages : en
Pages : 662

Get Book Here

Book Description


Rock Fractures and Fluid Flow

Rock Fractures and Fluid Flow PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309049962
Category : Science
Languages : en
Pages : 568

Get Book Here

Book Description
Scientific understanding of fluid flow in rock fracturesâ€"a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storageâ€"has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.

Static Conceptual Fracture Modeling

Static Conceptual Fracture Modeling PDF Author: Ronald A. Nelson
Publisher: John Wiley & Sons
ISBN: 1119596947
Category : Science
Languages : en
Pages : 208

Get Book Here

Book Description
Modelling of flow in naturally fractured reservoirs is quickly becoming mandatory in all phases of oil and gas exploration and production. Creation of a Static Conceptual Fracture Model (SCFM) is needed as input to create flow simulations for today and for prediction of flow into the future. Unfortunately, the computer modelers tasked with constructing the gridded fracture model are often not well versed in natural fracture characterization and are often forced to make quick decisions as to the input required by the software used to create these models. Static Conceptual Fracture Modelling: Preparing for Simulation and Development describes all the fracture and reservoir parameters needed to create the fracture database for effective modelling and how to generate the data and parameter distributions. The material covered in this volume highlights not only natural fracture system quantification and formatting, but also describes best practices for managing technical teams charged with creating the SCFM. This book will become a must on the shelf for all reservoir modelers.

Naturally Fractured Reservoirs

Naturally Fractured Reservoirs PDF Author: Roberto Aguilera
Publisher: PennWell Books
ISBN:
Category : Science
Languages : en
Pages : 730

Get Book Here

Book Description
This book deals exclusively with naturally fractured reservoirs and includes many subjects usually treated in separate volumes. A highly practical edition, Naturally Fractured Reservoirs is written for students, reservoir geologists, log analysts and petroleum engineers.