Physical Layer Security in Co-operative MIMO Networks - Key Generation and Reliability Evaluation

Physical Layer Security in Co-operative MIMO Networks - Key Generation and Reliability Evaluation PDF Author: Kan Chen
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Widely recognized security vulnerabilities in current wireless radio access technologies undermine the benefits of ubiquitous mobile connectivity. Security strategies typically rely on bit-level cryptographic techniques and associated protocols at various levels of the data processing stack. These solutions have drawbacks that have slowed down the progress of new wireless services. Physical layer security approaches derived from an information theoretic framework have been recently proposed with secret key generation being the primary focus of this dissertation. Previous studies of physical layer secret key generation (PHY-SKG) indicate that a low secret key generation rate (SKGR) is the primary limitation of this approach. To overcome this drawback, we propose novel SKG schemes to increase the SKGR as well as improve the security strength of generated secret keys by exploiting multiple input and multiple output (MIMO), cooperative MIMO (co-op MIMO) networks. Both theoretical and numerical results indicate that relay-based co-op MIMO schemes, traditionally used to enhance LTE-A network throughput and coverage, can also increase SKGR. Based on the proposed SKG schemes, we introduce innovative power allocation strategies to further enhance SKGR. Results indicate that the proposed power allocation scheme can offer 15% to 30% increase in SKGR relative to MIMO/co-op MIMO networks with equal power allocation at low-power region, thereby improving network security. Although co-op MIMO architecture can offer significant improvements in both performance and security, the concept of joint transmission and reception with relay nodes introduce new vulnerabilities. For example, even if the transmitted information is secured, it is difficult but essential to monitor the behavior of relay nodes. Selfish or malicious intentions of relay nodes may manifest as non-cooperation. Therefore, we propose relay node reliability evaluation schemes to measure and monitor the misbehavior of relay nodes. Using a power-sensing based reliability evaluation scheme, we attempt to detect selfish nodes thereby measuring the level of non-cooperation. An overall node reliability evaluation, which can be used as a guide for mobile users interested in collaboration with relay nodes, is performed at the basestation. For malicious behavior, we propose a network tomography technique to arrive at node reliability metrics. We estimate the delay distribution of each internal link within a co-op MIMO framework and use this estimate as an indicator of reliability. The effectiveness of the proposed node reliability evaluations are demonstrated via both theoretical analysis and simulations results. The proposed PHY-SKG strategies used in conjunction with node reliability evaluation schemes represent a novel cross-layer approach to enhance security of cooperative networks.

Physical Layer Security in Co-operative MIMO Networks - Key Generation and Reliability Evaluation

Physical Layer Security in Co-operative MIMO Networks - Key Generation and Reliability Evaluation PDF Author: Kan Chen
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Widely recognized security vulnerabilities in current wireless radio access technologies undermine the benefits of ubiquitous mobile connectivity. Security strategies typically rely on bit-level cryptographic techniques and associated protocols at various levels of the data processing stack. These solutions have drawbacks that have slowed down the progress of new wireless services. Physical layer security approaches derived from an information theoretic framework have been recently proposed with secret key generation being the primary focus of this dissertation. Previous studies of physical layer secret key generation (PHY-SKG) indicate that a low secret key generation rate (SKGR) is the primary limitation of this approach. To overcome this drawback, we propose novel SKG schemes to increase the SKGR as well as improve the security strength of generated secret keys by exploiting multiple input and multiple output (MIMO), cooperative MIMO (co-op MIMO) networks. Both theoretical and numerical results indicate that relay-based co-op MIMO schemes, traditionally used to enhance LTE-A network throughput and coverage, can also increase SKGR. Based on the proposed SKG schemes, we introduce innovative power allocation strategies to further enhance SKGR. Results indicate that the proposed power allocation scheme can offer 15% to 30% increase in SKGR relative to MIMO/co-op MIMO networks with equal power allocation at low-power region, thereby improving network security. Although co-op MIMO architecture can offer significant improvements in both performance and security, the concept of joint transmission and reception with relay nodes introduce new vulnerabilities. For example, even if the transmitted information is secured, it is difficult but essential to monitor the behavior of relay nodes. Selfish or malicious intentions of relay nodes may manifest as non-cooperation. Therefore, we propose relay node reliability evaluation schemes to measure and monitor the misbehavior of relay nodes. Using a power-sensing based reliability evaluation scheme, we attempt to detect selfish nodes thereby measuring the level of non-cooperation. An overall node reliability evaluation, which can be used as a guide for mobile users interested in collaboration with relay nodes, is performed at the basestation. For malicious behavior, we propose a network tomography technique to arrive at node reliability metrics. We estimate the delay distribution of each internal link within a co-op MIMO framework and use this estimate as an indicator of reliability. The effectiveness of the proposed node reliability evaluations are demonstrated via both theoretical analysis and simulations results. The proposed PHY-SKG strategies used in conjunction with node reliability evaluation schemes represent a novel cross-layer approach to enhance security of cooperative networks.

Physical Layer Security in 5G and Beyond Wireless Networks Enabling Technologies

Physical Layer Security in 5G and Beyond Wireless Networks Enabling Technologies PDF Author: Majid H. Khoshafa
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Information security has always been a critical concern for wireless communications due to the broadcast nature of the open wireless medium. Commonly, security relies on cryptographic encryption techniques at higher layers to ensure information security. However, traditional cryptographic methods may be inadequate or inappropriate due to novel improvements in the computational power of devices and optimization approaches. Therefore, supplementary techniques are required to secure the transmission data. Physical layer security (PLS) can improve the security of wireless communications by exploiting the characteristics of wireless channels. Therefore, we study the PLS performance in the fifth generation (5G) and beyond wireless networks enabling technologies in this thesis. The thesis consists of three main parts. In the first part, the PLS design and analysis for Device-to-Device (D2D) communication is carried out for several scenarios. More specifically, in this part, we study the underlay relay-aided D2D communications to improve the PLS of the cellular network. We propose a cooperative scheme, whereby the D2D pair, in return for being allowed to share the spectrum band of the cellular network, serves as a friendly jammer using full-duplex (FD) and half-duplex (HD) transmissions and relay selection to degrade the wiretapped signal at an eavesdropper. This part aims to show that spectrum sharing is advantageous for both D2D communications and cellular networks concerning reliability and robustness for the former and PLS enhancement for the latter. Closed-form expressions for the D2D outage probability, the secrecy outage probability (SOP), and the probability of non-zero secrecy capacity (PNSC) are derived to assess the proposed cooperative system model. The results show enhancing the robustness and reliability of D2D communication while simultaneously improving the cellular network's PLS by generating jamming signals towards the eavesdropper. Furthermore, intensive Monte-Carlo simulations and numerical results are provided to verify the efficiency of the proposed schemes and validate the derived expressions' accuracy. In the second part, we consider a secure underlay cognitive radio (CR) network in the presence of a primary passive eavesdropper. Herein, a secondary multi-antenna full-duplex destination node acts as a jammer to the primary eavesdropper to improve the PLS of the primary network. In return for this favor, the energy-constrained secondary source gets access to the primary network to transmit its information so long as the interference to the latter is below a certain level. As revealed in our analysis and simulation, the reliability and robustness of the CR network are improved, while the security level of the primary network is enhanced concurrently. Finally, we investigate the PLS design and analysis of reconfigurable intelligent surface (RIS)-aided wireless communication systems in an inband underlay D2D communication and the CR network. An RIS is used to adjust its reflecting elements to enhance the data transmission while improving the PLS concurrently. Furthermore, we investigate the design of active elements in RIS to overcome the double-fading problem introduced in the RISaided link in a wireless communications system. Towards this end, each active RIS element amplifies the reflected incident signal rather than only reflecting it as done in passive RIS modules. As revealed in our analysis and simulation, the use of active elements leads to a drastic reduction in the size of RIS to achieve a given performance level. Furthermore, a practical design for active RIS is proposed.

Physical Layer Security Issues in Massive MIMO and GNSS

Physical Layer Security Issues in Massive MIMO and GNSS PDF Author: Ziya Gülgün
Publisher: Linköping University Electronic Press
ISBN: 917929698X
Category :
Languages : en
Pages : 30

Get Book Here

Book Description
Wireless communication technology has evolved rapidly during the last 20 years. Nowadays, there are huge networks providing communication infrastructures to not only people but also to machines, such as unmanned air and ground vehicles, cars, household appliances and so on. There is no doubt that new wireless communication technologies must be developed, that support the data traffic in these emerging, large networks. While developing these technologies, it is also important to investigate the vulnerability of these technologies to different malicious attacks. In particular, spoofing and jamming attacks should be investigated and new countermeasure techniques should be developed. In this context, spoofing refers to the situation in which a receiver identifies falsified signals, that are transmitted by the spoofers, as legitimate or trustable signals. Jamming, on the other hand, refers to the transmission of radio signals that disrupt communications by decreasing the signal-to-interference-and-noise ratio (SINR) on the receiver side. In this thesis, we analyze the effects of spoofing and jamming both on global navigation satellite system (GNSS) and on massive multiple-input multiple-output (MIMO) communications. GNSS is everywhere and used to provide location information. Massive MIMO is one of the cornerstone technologies in 5G. We also propose countermeasure techniques to the studied spoofing and jamming attacks. More specifically, in paper A we analyze the effects of distributed jammers on massive MIMO and answer the following questions: Is massive MIMO more robust to distributed jammers compared with previous generation’s cellular networks? Which jamming attack strategies are the best from the jammer’s perspective, and can the jamming power be spread over space to achieve more harmful attacks? In paper B, we propose a detector for GNSS receivers that is able to detect multiple spoofers without having any prior information about the attack strategy or the number of spoofers in the environment.

Physical Layer Security

Physical Layer Security PDF Author: Khoa N. Le
Publisher: Springer Nature
ISBN: 3030553663
Category : Technology & Engineering
Languages : en
Pages : 213

Get Book Here

Book Description
This book studies the vulnerability of wireless communications under line-of-sight (LoS) and non-LoS correlated fading environments. The authors theoretically and practically provide physical layer security analyses for several technologies and networks such as Fifth-Generation (5G) networks, Internet of Things (IoT) applications, and Non-orthogonal multiple access (NOMA). The authors have provided these under various practical scenarios, and developed theoretical aspects to validate their proposed applications. Presents physical layer security (PLS) under correlated fading environments, 5G wireless networks, and NOMA networks; Provides end-to-end analyses, combination of channel correlation and outdated CSI and their effects on PL; Includes contributions of PLS research written by global experts in academia and industry.

Physical Layer Security in Random Cellular Networks

Physical Layer Security in Random Cellular Networks PDF Author: Hui-Ming Wang
Publisher: Springer
ISBN: 9811015759
Category : Computers
Languages : en
Pages : 127

Get Book Here

Book Description
This book investigates key security issues in connection with the physical layer for random wireless cellular networks. It first introduces readers to the fundamentals of information theoretic security in the physical layer. By examining recently introduced security techniques for wireless point-to-point communications, the book proposes new solutions to physical layer security based on stochastic geometric frameworks for random cellular networks. It subsequently elaborates on physical-layer security in multi-tier heterogeneous networks. With the new modeled settings, the authors also verify the security performance with the impact of the full-duplex transceivers. The specific model design presented here offers a valuable point of reference for readers in related areas. In addition, the book highlights promising topics and proposes potential future research directions.

Physical-Layer Security

Physical-Layer Security PDF Author: Matthieu Bloch
Publisher: Cambridge University Press
ISBN: 1139496298
Category : Technology & Engineering
Languages : en
Pages : 347

Get Book Here

Book Description
This complete guide to physical-layer security presents the theoretical foundations, practical implementation, challenges and benefits of a groundbreaking new model for secure communication. Using a bottom-up approach from the link level all the way to end-to-end architectures, it provides essential practical tools that enable graduate students, industry professionals and researchers to build more secure systems by exploiting the noise inherent to communications channels. The book begins with a self-contained explanation of the information-theoretic limits of secure communications at the physical layer. It then goes on to develop practical coding schemes, building on the theoretical insights and enabling readers to understand the challenges and opportunities related to the design of physical layer security schemes. Finally, applications to multi-user communications and network coding are also included.

Physical Layer Security in Cooperative Wireless Communications

Physical Layer Security in Cooperative Wireless Communications PDF Author: Esa Alotaibi
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Physical Layer Secret Key Generation for Decentralized Wireless Networks

Physical Layer Secret Key Generation for Decentralized Wireless Networks PDF Author: Iulia Tunaru
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Emerging decentralized wireless systems, such as sensor or ad-hoc networks, will demand an adequate level of security in order to protect the private and often sensitive information that they carry. The main security mechanism for confidentiality in such networks is symmetric cryptography, which requires the sharing of a symmetric key between the two legitimate parties. According to the principles of physical layer security, wireless devices within the communication range can exploit the wireless channel in order to protect their communications. Due to the theoretical reciprocity of wireless channels, the spatial decorrelation property (e.g., in rich scattering environments), as well as the fine temporal resolution of the Impulse Radio - Ultra Wideband (IR-UWB) technology, directly sampled received signals or estimated channel impulse responses (CIRs) can be used for symmetric secret key extraction under the information-theoretic source model. Firstly, we are interested in the impact of quantization and channel estimation algorithms on the reciprocity and on the random aspect of the generated keys. Secondly, we investigate alternative ways of limiting public exchanges needed for the reconciliation phase. Finally, we develop a new signal-based method that extends the point-to-point source model to cooperative contexts with several nodes intending to establish a group key.

Physical Layer Security

Physical Layer Security PDF Author: Khoa N. Le
Publisher:
ISBN: 9783030553678
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
This book studies the vulnerability of wireless communications under line-of-sight (LoS) and non-LoS correlated fading environments. The authors theoretically and practically provide physical layer security analyses for several technologies and networks such as Fifth-Generation (5G) networks, Internet of Things (IoT) applications, and Non-orthogonal multiple access (NOMA). The authors have provided these under various practical scenarios, and developed theoretical aspects to validate their proposed applications. Presents physical layer security (PLS) under correlated fading environments, 5G wireless networks, and NOMA networks; Provides end-to-end analyses, combination of channel correlation and outdated CSI and their effects on PL; Includes contributions of PLS research written by global experts in academia and industry.

Physical Layer Security in Wireless Communications

Physical Layer Security in Wireless Communications PDF Author: Xiangyun Zhou
Publisher: CRC Press
ISBN: 1466567015
Category : Computers
Languages : en
Pages : 308

Get Book Here

Book Description
Physical Layer Security in Wireless Communications supplies a systematic overview of the basic concepts, recent advancements, and open issues in providing communication security at the physical layer. It introduces the key concepts, design issues, and solutions to physical layer security in single-user and multi-user communication systems, as well as large-scale wireless networks. Presenting high-level discussions along with specific examples, and illustrations, this is an ideal reference for anyone that needs to obtain a macro-level understanding of physical layer security and its role in future wireless communication systems.