Author: Petra Fromme
Publisher: John Wiley & Sons
ISBN: 3527623477
Category : Science
Languages : en
Pages : 386
Book Description
Perfectly timed, this handbook covers many important aspects of the topic that have only recently been understood -- making this a truly comprehensive work. With its extensive use of color, it surveys the most important proteins involved in photosynthesis, discussing the structural information we have at our disposal. Most chapters are dedicated to one protein, while a few also summarize general associated concepts. The book also has an accompanying website that contains data files and animations to allow readers to visualize many of the complicated proteins presented. A must for anyone studying photosynthesis and structural biology, as well as those working in the plant and crop biotechnology industry.
Photosynthetic Protein Complexes
Author: Petra Fromme
Publisher: John Wiley & Sons
ISBN: 3527623477
Category : Science
Languages : en
Pages : 386
Book Description
Perfectly timed, this handbook covers many important aspects of the topic that have only recently been understood -- making this a truly comprehensive work. With its extensive use of color, it surveys the most important proteins involved in photosynthesis, discussing the structural information we have at our disposal. Most chapters are dedicated to one protein, while a few also summarize general associated concepts. The book also has an accompanying website that contains data files and animations to allow readers to visualize many of the complicated proteins presented. A must for anyone studying photosynthesis and structural biology, as well as those working in the plant and crop biotechnology industry.
Publisher: John Wiley & Sons
ISBN: 3527623477
Category : Science
Languages : en
Pages : 386
Book Description
Perfectly timed, this handbook covers many important aspects of the topic that have only recently been understood -- making this a truly comprehensive work. With its extensive use of color, it surveys the most important proteins involved in photosynthesis, discussing the structural information we have at our disposal. Most chapters are dedicated to one protein, while a few also summarize general associated concepts. The book also has an accompanying website that contains data files and animations to allow readers to visualize many of the complicated proteins presented. A must for anyone studying photosynthesis and structural biology, as well as those working in the plant and crop biotechnology industry.
Molecular Biology of the Cell
Author:
Publisher:
ISBN: 9780815332183
Category : Cells
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9780815332183
Category : Cells
Languages : en
Pages : 0
Book Description
Solar Energy Harvesting with Photosynthetic Pigment-Protein Complexes
Author: Sai Kishore Ravi
Publisher: Springer Nature
ISBN: 9811563330
Category : Technology & Engineering
Languages : en
Pages : 179
Book Description
This book chronicles a few approaches to constructing biohybrid devices using photosynthetic protein complexes. Can the abundantly available solar energy be tapped to meet our rising energy demands using green and cheap active materials? Exploring nature’s own tiny solar factories, the photosynthetic proteins could hold the key. Photosynthetic pigment-protein complexes found in plants and certain types of bacteria transduce sunlight into biologically useful forms of energy through a photochemical charge separation that has a 100% quantum efficiency. Getting the photoproteins to perform this efficient energy conversion reaction in a semi-artificial setup is central to developing biohybrid solar technologies, a promising green alternative to today’s photovoltaics. This book looks into the existing challenges and opportunities in the field of biohybrid photovoltaics and provides a few prospective methods of enhancing the photocurrent and photovoltage in these devices. The book targets the readership of students, academics, and industrial practitioners who are interested in alternative solar technologies.
Publisher: Springer Nature
ISBN: 9811563330
Category : Technology & Engineering
Languages : en
Pages : 179
Book Description
This book chronicles a few approaches to constructing biohybrid devices using photosynthetic protein complexes. Can the abundantly available solar energy be tapped to meet our rising energy demands using green and cheap active materials? Exploring nature’s own tiny solar factories, the photosynthetic proteins could hold the key. Photosynthetic pigment-protein complexes found in plants and certain types of bacteria transduce sunlight into biologically useful forms of energy through a photochemical charge separation that has a 100% quantum efficiency. Getting the photoproteins to perform this efficient energy conversion reaction in a semi-artificial setup is central to developing biohybrid solar technologies, a promising green alternative to today’s photovoltaics. This book looks into the existing challenges and opportunities in the field of biohybrid photovoltaics and provides a few prospective methods of enhancing the photocurrent and photovoltage in these devices. The book targets the readership of students, academics, and industrial practitioners who are interested in alternative solar technologies.
The Photosynthetic Membrane
Author: Alexander V. Ruban
Publisher: John Wiley & Sons
ISBN: 1118447603
Category : Science
Languages : en
Pages : 412
Book Description
The proteins that gather light for plant photosynthesis are embedded within cell membranes in a site called the thylakoid membrane (or the "photosynthetic membrane"). These proteins form the light harvesting antenna that feeds with energy a number of vital photosynthetic processes such as water oxidation and oxygen evolution, the pumping of protons across the thylakoid membranes coupled with the electron transport chain of the photosystems and cytochrome b6f complex, and ATP synthesis by ATP synthase utilizing the generated proton gradient. The Photosynthetic Membrane: Molecular Mechanisms and Biophysics of Light Harvesting is an introduction to the fundamental design and function of the light harvesting photosynthetic membrane, one of the most common and most important structures of life. It describes the underlying structure of the membrane, the variety and roles of the membrane proteins, the atomic structures of light harvesting complexes and their macromolecular assemblies, the molecular mechanisms and dynamics of light harvesting and primary energy transformations, and the broad range of adaptations to different light environments. The book shows, using the example of the photosynthetic membrane, how complex biological structures utilize principles of chemistry and physics in order to carry out biological functions. The Photosynthetic Membrane: Molecular Mechanisms of Light Harvesting will appeal to a wide audience of undergraduate and postgraduate students as well as researchers working in the fields of biochemistry, molecular biology, biophysics, plant science and bioengineering.
Publisher: John Wiley & Sons
ISBN: 1118447603
Category : Science
Languages : en
Pages : 412
Book Description
The proteins that gather light for plant photosynthesis are embedded within cell membranes in a site called the thylakoid membrane (or the "photosynthetic membrane"). These proteins form the light harvesting antenna that feeds with energy a number of vital photosynthetic processes such as water oxidation and oxygen evolution, the pumping of protons across the thylakoid membranes coupled with the electron transport chain of the photosystems and cytochrome b6f complex, and ATP synthesis by ATP synthase utilizing the generated proton gradient. The Photosynthetic Membrane: Molecular Mechanisms and Biophysics of Light Harvesting is an introduction to the fundamental design and function of the light harvesting photosynthetic membrane, one of the most common and most important structures of life. It describes the underlying structure of the membrane, the variety and roles of the membrane proteins, the atomic structures of light harvesting complexes and their macromolecular assemblies, the molecular mechanisms and dynamics of light harvesting and primary energy transformations, and the broad range of adaptations to different light environments. The book shows, using the example of the photosynthetic membrane, how complex biological structures utilize principles of chemistry and physics in order to carry out biological functions. The Photosynthetic Membrane: Molecular Mechanisms of Light Harvesting will appeal to a wide audience of undergraduate and postgraduate students as well as researchers working in the fields of biochemistry, molecular biology, biophysics, plant science and bioengineering.
Photosynthesis
Author: Bacon Ke
Publisher: Springer Science & Business Media
ISBN: 0306481367
Category : Science
Languages : en
Pages : 784
Book Description
Photosynthesis: Photobiochemistry and Photobiophysics is the first single-authored book in the Advances in Photosynthesis Series. It provides an overview of the light reactions and electron transfers in both oxygenic and anoxygenic photosynthesis. The scope of the book is characterized by the time frame in which the light reactions and the subsequent electron transfers take place, namely between =10sup-12/sup and =10-3 second. The book is divided into five parts: An Overview; Bacterial Photosynthesis; Photosystem II & Oxygen Evolution; Photosystem I; and Proton Transport and Photophosphorylation. In discussing the structure and function of various protein complexes, we begin with an introductory chapter, followed by chapters on light-harvesting complexes, the primary electron donors and the primary electron acceptors, and finally the secondary electron donors. The discussion on electron acceptors is presented in the order of their discovery to convey a sense of history, in parallel with the advancement in instrumentation of increasing time resolution. The book includes a large number of stereo pictures showing the three-dimensional structure of various photosynthetic proteins, which can be easily viewed with unaided eyes. This book is designed to be used as a textbook in a graduate or upper-division undergraduate course in photosynthesis, photobiology, plant physiology, biochemistry, and biophysics; it is equally suitable as a resource book for students, teachers, and researchers in the areas of molecular and cellular biology, integrative biology, microbiology, and plant biology.
Publisher: Springer Science & Business Media
ISBN: 0306481367
Category : Science
Languages : en
Pages : 784
Book Description
Photosynthesis: Photobiochemistry and Photobiophysics is the first single-authored book in the Advances in Photosynthesis Series. It provides an overview of the light reactions and electron transfers in both oxygenic and anoxygenic photosynthesis. The scope of the book is characterized by the time frame in which the light reactions and the subsequent electron transfers take place, namely between =10sup-12/sup and =10-3 second. The book is divided into five parts: An Overview; Bacterial Photosynthesis; Photosystem II & Oxygen Evolution; Photosystem I; and Proton Transport and Photophosphorylation. In discussing the structure and function of various protein complexes, we begin with an introductory chapter, followed by chapters on light-harvesting complexes, the primary electron donors and the primary electron acceptors, and finally the secondary electron donors. The discussion on electron acceptors is presented in the order of their discovery to convey a sense of history, in parallel with the advancement in instrumentation of increasing time resolution. The book includes a large number of stereo pictures showing the three-dimensional structure of various photosynthetic proteins, which can be easily viewed with unaided eyes. This book is designed to be used as a textbook in a graduate or upper-division undergraduate course in photosynthesis, photobiology, plant physiology, biochemistry, and biophysics; it is equally suitable as a resource book for students, teachers, and researchers in the areas of molecular and cellular biology, integrative biology, microbiology, and plant biology.
Regulation of Photosynthesis
Author: Eva-Mari Aro
Publisher: Springer Science & Business Media
ISBN: 0306481480
Category : Science
Languages : en
Pages : 624
Book Description
This book covers the expression of photosynthesis related genes including regulation both at transcriptional and translational levels. It reviews biogenesis, turnover, and senescence of thylakoid pigment protein complexes and highlights some crucial regulatory steps in carbon metabolism.
Publisher: Springer Science & Business Media
ISBN: 0306481480
Category : Science
Languages : en
Pages : 624
Book Description
This book covers the expression of photosynthesis related genes including regulation both at transcriptional and translational levels. It reviews biogenesis, turnover, and senescence of thylakoid pigment protein complexes and highlights some crucial regulatory steps in carbon metabolism.
Light Harvesting in Photosynthesis
Author: Roberta Croce
Publisher: CRC Press
ISBN: 1351242873
Category : Science
Languages : en
Pages : 778
Book Description
This landmark collective work introduces the physical, chemical, and biological principles underlying photosynthesis: light absorption, excitation energy transfer, and charge separation. It begins with an introduction to properties of various pigments, and the pigment proteins in plant, algae, and bacterial systems. It addresses the underlying physics of light harvesting and key spectroscopic methods, including data analysis. It discusses assembly of the natural system, its energy transfer properties, and regulatory mechanisms. It also addresses light-harvesting in artificial systems and the impact of photosynthesis on our environment. The chapter authors are amongst the field’s world recognized experts. Chapters are divided into five main parts, the first focused on pigments, their properties and biosynthesis, and the second section looking at photosynthetic proteins, including light harvesting in higher plants, algae, cyanobacteria, and green bacteria. The third part turns to energy transfer and electron transport, discussing modeling approaches, quantum aspects, photoinduced electron transfer, and redox potential modulation, followed by a section on experimental spectroscopy in light harvesting research. The concluding final section includes chapters on artificial photosynthesis, with topics such as use of cyanobacteria and algae for sustainable energy production. Robert Croce is Head of the Biophysics Group and full professor in biophysics of photosynthesis/energy at Vrije Universiteit, Amsterdam. Rienk van Grondelle is full professor at Vrije Universiteit, Amsterdam. Herbert van Amerongen is full professor of biophysics in the Department of Agrotechnology and Food Sciences at Wageningen University, where he is also director of the MicroSpectroscopy Research Facility. Ivo van Stokkum is associate professor in the Department of Physics and Astronomy, Faculty of Sciences, at Vrije Universiteit, Amsterdam.
Publisher: CRC Press
ISBN: 1351242873
Category : Science
Languages : en
Pages : 778
Book Description
This landmark collective work introduces the physical, chemical, and biological principles underlying photosynthesis: light absorption, excitation energy transfer, and charge separation. It begins with an introduction to properties of various pigments, and the pigment proteins in plant, algae, and bacterial systems. It addresses the underlying physics of light harvesting and key spectroscopic methods, including data analysis. It discusses assembly of the natural system, its energy transfer properties, and regulatory mechanisms. It also addresses light-harvesting in artificial systems and the impact of photosynthesis on our environment. The chapter authors are amongst the field’s world recognized experts. Chapters are divided into five main parts, the first focused on pigments, their properties and biosynthesis, and the second section looking at photosynthetic proteins, including light harvesting in higher plants, algae, cyanobacteria, and green bacteria. The third part turns to energy transfer and electron transport, discussing modeling approaches, quantum aspects, photoinduced electron transfer, and redox potential modulation, followed by a section on experimental spectroscopy in light harvesting research. The concluding final section includes chapters on artificial photosynthesis, with topics such as use of cyanobacteria and algae for sustainable energy production. Robert Croce is Head of the Biophysics Group and full professor in biophysics of photosynthesis/energy at Vrije Universiteit, Amsterdam. Rienk van Grondelle is full professor at Vrije Universiteit, Amsterdam. Herbert van Amerongen is full professor of biophysics in the Department of Agrotechnology and Food Sciences at Wageningen University, where he is also director of the MicroSpectroscopy Research Facility. Ivo van Stokkum is associate professor in the Department of Physics and Astronomy, Faculty of Sciences, at Vrije Universiteit, Amsterdam.
The Photosynthetic Bacterial Reaction Center
Author: J. Breton
Publisher: Springer Science & Business Media
ISBN: 1489908153
Category : Science
Languages : en
Pages : 433
Book Description
This volume contains the contributions from the speakers at the NATO Advanced Research Workshop on "Structure of the Photosynthetic Bacterial Reaction Center X-ray Crystallography and Optical Spectroscopy with Polarized Light" which was held at the "Maison d'Hotes" of the Centre d'Etudes Nucleaires de Cadarache in the South of France, 20-25 September, 1987. This meeting continued in the spirit of a previous workshop which took place in Feldafing (FRG), March 1985. Photosynthetic reaction centers are intrinsic membrane proteins which, by performing a photoinduced transmembrane charge separation, are responsible for the conversion and storage of solar energy. Since the pioneering work of Reed and Clayton (1968) on the isolation of the reaction center from photosynthetic bacteria, optical spectroscopy with polarized light has been one of the main tools used to investigate the geometrical arrangement of the various chromophores in these systems. The recent elucidation by X-ray crystallography of the structure of several bacterial reaction centers, a breakthrough initiated by Michel and Deisenhofer, has provided us with the atomic coordinates of the pigments and some details about their interactions with neighboring aminoacid residues. This essential step has given a large impetus both to experimentalists and to theoreticians who are now attempting to relate the X-ray structural model to the optical properties of the reaction center and ultimately to its primary biological function.
Publisher: Springer Science & Business Media
ISBN: 1489908153
Category : Science
Languages : en
Pages : 433
Book Description
This volume contains the contributions from the speakers at the NATO Advanced Research Workshop on "Structure of the Photosynthetic Bacterial Reaction Center X-ray Crystallography and Optical Spectroscopy with Polarized Light" which was held at the "Maison d'Hotes" of the Centre d'Etudes Nucleaires de Cadarache in the South of France, 20-25 September, 1987. This meeting continued in the spirit of a previous workshop which took place in Feldafing (FRG), March 1985. Photosynthetic reaction centers are intrinsic membrane proteins which, by performing a photoinduced transmembrane charge separation, are responsible for the conversion and storage of solar energy. Since the pioneering work of Reed and Clayton (1968) on the isolation of the reaction center from photosynthetic bacteria, optical spectroscopy with polarized light has been one of the main tools used to investigate the geometrical arrangement of the various chromophores in these systems. The recent elucidation by X-ray crystallography of the structure of several bacterial reaction centers, a breakthrough initiated by Michel and Deisenhofer, has provided us with the atomic coordinates of the pigments and some details about their interactions with neighboring aminoacid residues. This essential step has given a large impetus both to experimentalists and to theoreticians who are now attempting to relate the X-ray structural model to the optical properties of the reaction center and ultimately to its primary biological function.
Light-Harvesting Antennas in Photosynthesis
Author: B.R. Green
Publisher: Springer Science & Business Media
ISBN: 9401720878
Category : Science
Languages : en
Pages : 533
Book Description
Light-Harvesting Antennas in Photosynthesis is concerned with the most important process on earth - the harvesting of light energy by photosynthetic organisms. This book provides a comprehensive treatment of all aspects of photosynthetic light-harvesting antennas, from the biophysical mechanisms of light absorption and energy transfer to the structure, biosynthesis and regulation of antenna systems in whole organisms. It sets the great variety of antenna pigment-protein complexes in their evolutionary context and at the same time brings in the latest hi-tech developments. The book is unique in the degree to which it emphasizes the integration of molecular biological, biochemical and biophysical approaches. Overall, a well-organized, understandable, and comprehensive volume. It will be a valuable resource for both graduate students and their professors, and a helpful library reference book for undergraduates.
Publisher: Springer Science & Business Media
ISBN: 9401720878
Category : Science
Languages : en
Pages : 533
Book Description
Light-Harvesting Antennas in Photosynthesis is concerned with the most important process on earth - the harvesting of light energy by photosynthetic organisms. This book provides a comprehensive treatment of all aspects of photosynthetic light-harvesting antennas, from the biophysical mechanisms of light absorption and energy transfer to the structure, biosynthesis and regulation of antenna systems in whole organisms. It sets the great variety of antenna pigment-protein complexes in their evolutionary context and at the same time brings in the latest hi-tech developments. The book is unique in the degree to which it emphasizes the integration of molecular biological, biochemical and biophysical approaches. Overall, a well-organized, understandable, and comprehensive volume. It will be a valuable resource for both graduate students and their professors, and a helpful library reference book for undergraduates.
Molecular Biology of Photosynthesis
Author: Govindjee
Publisher: Springer Science & Business Media
ISBN: 9400922698
Category : Science
Languages : en
Pages : 825
Book Description
Molecular biology, particularly molecular genetics, is among the newest and most powerful approach in modern photosynthesis research. Development of molecular biology techniques has provided new methods to solve old problems in many biological disciplines. Molecular biology has its greatest potential for contribution when applied in combination with other disciplines, to focus not just on genes and molecules, but on the complex interaction between them and the biochemical pathways in the whole organism. Photosynthesis is surely the best studied research area in plant biology, making this field the foremost candidate for successfully employing molecular genetic techniques. Already, the success of molecular biology in photosynthesis has been nothing short of spectacular. Work performed over the last few years, much of which is sum marized in this volume, stands in evidence. Techniques such as site-specific mutagenesis have helped us in examining the roles of individual protein domains in the function of multiunit complexes such as the enzyme ribulose-l ,5-bisphos phate carboxylase/oxygenase (RUBISCO) and the oxygen evolving photo system (the photosystem II). The techniques of molecular biology have been very important in advancing the state of knowledge of the reaction center from the photosynthetic bacteria whose structure has been elegantly deduced by H. Michel and 1. Deisenhofer from the X-ray studies of its crystals.
Publisher: Springer Science & Business Media
ISBN: 9400922698
Category : Science
Languages : en
Pages : 825
Book Description
Molecular biology, particularly molecular genetics, is among the newest and most powerful approach in modern photosynthesis research. Development of molecular biology techniques has provided new methods to solve old problems in many biological disciplines. Molecular biology has its greatest potential for contribution when applied in combination with other disciplines, to focus not just on genes and molecules, but on the complex interaction between them and the biochemical pathways in the whole organism. Photosynthesis is surely the best studied research area in plant biology, making this field the foremost candidate for successfully employing molecular genetic techniques. Already, the success of molecular biology in photosynthesis has been nothing short of spectacular. Work performed over the last few years, much of which is sum marized in this volume, stands in evidence. Techniques such as site-specific mutagenesis have helped us in examining the roles of individual protein domains in the function of multiunit complexes such as the enzyme ribulose-l ,5-bisphos phate carboxylase/oxygenase (RUBISCO) and the oxygen evolving photo system (the photosystem II). The techniques of molecular biology have been very important in advancing the state of knowledge of the reaction center from the photosynthetic bacteria whose structure has been elegantly deduced by H. Michel and 1. Deisenhofer from the X-ray studies of its crystals.