Photonics of Quantum-dot Nanomaterials and Devices

Photonics of Quantum-dot Nanomaterials and Devices PDF Author: Ortwin Hess
Publisher: World Scientific
ISBN: 1848165226
Category : Science
Languages : en
Pages : 182

Get Book Here

Book Description
1. Introduction to photonic quantum dot nanomaterials and devices. 1.1. Physical properties of quantum dots. 1.2. Active semiconductor gain media. 1.3. Quantum dot lasers. 1.4. Laser cavities -- 2. Theory of quantum dot light-matter dynamics. 2.1. Rate equations. 2.2. Maxwell-Bloch equations. 2.3. Quantum luminescence equations. 2.4. Quantum theoretical description -- 3. Light meets matter I: microscopic carrier effect. 3.1. Dynamics in the active charge carrier plasma. 3.2. Dynamic level hole burning. 3.3. Ultrashort nonlinear gain and index dynamics. 3.4. Conclusion -- 4. Light meets matter II: mesoscopic space-time dynamics. 4.1. Introduction: transverse and longitudinal mode dynamics. 4.2. Influence of the transverse degree of freedom and nano-structuring on nearfield dynamics and spectra. 4.3. Longitudinal modes. 4.4. Coupled space-time dynamics. 4.5. Conclusion -- 5. Performance and characterisation: properties on large time and length scales. 5.1. Introduction. 5.2. Spatial and spectral beam quality. 5.3. Dynamic amplitude phase coupling. 5.4. Conclusion -- 6. Nonlinear pulse propagation in semiconductor quantum dot lasers. 6.1. Dynamic shaping of short optical pulses. 6.2. Nonlinear femtosecond dynamics. 6.3. Conclusion -- 7. High-speed dynamics. 7.1. Mode-locking in multi-section quantum dot lasers. 7.2. Dependence of pulse duration on injection current, bias voltage and device geometry. 7.3. Radio frequency spectra of the emitted light. 7.4. Short-pulse optimisation. 7.5. Conclusion -- 8. Quantum dot random lasers. 8.1. Spatially inhomogeneous semiconductor quantum dot ensembles. 8.2. Coherence properties. 8.3. Random lasing in semiconductor quantum dot ensembles. 8.4. Conclusion -- 9. Coherence properties of quantum dot micro-cavity lasers. 9.1. Introduction. 9.2. Radial signal propagation and coherence trapping. 9.3. Influence of disorder. 9.4. Conclusions

Photonics of Quantum-dot Nanomaterials and Devices

Photonics of Quantum-dot Nanomaterials and Devices PDF Author: Ortwin Hess
Publisher: World Scientific
ISBN: 1848165226
Category : Science
Languages : en
Pages : 182

Get Book Here

Book Description
1. Introduction to photonic quantum dot nanomaterials and devices. 1.1. Physical properties of quantum dots. 1.2. Active semiconductor gain media. 1.3. Quantum dot lasers. 1.4. Laser cavities -- 2. Theory of quantum dot light-matter dynamics. 2.1. Rate equations. 2.2. Maxwell-Bloch equations. 2.3. Quantum luminescence equations. 2.4. Quantum theoretical description -- 3. Light meets matter I: microscopic carrier effect. 3.1. Dynamics in the active charge carrier plasma. 3.2. Dynamic level hole burning. 3.3. Ultrashort nonlinear gain and index dynamics. 3.4. Conclusion -- 4. Light meets matter II: mesoscopic space-time dynamics. 4.1. Introduction: transverse and longitudinal mode dynamics. 4.2. Influence of the transverse degree of freedom and nano-structuring on nearfield dynamics and spectra. 4.3. Longitudinal modes. 4.4. Coupled space-time dynamics. 4.5. Conclusion -- 5. Performance and characterisation: properties on large time and length scales. 5.1. Introduction. 5.2. Spatial and spectral beam quality. 5.3. Dynamic amplitude phase coupling. 5.4. Conclusion -- 6. Nonlinear pulse propagation in semiconductor quantum dot lasers. 6.1. Dynamic shaping of short optical pulses. 6.2. Nonlinear femtosecond dynamics. 6.3. Conclusion -- 7. High-speed dynamics. 7.1. Mode-locking in multi-section quantum dot lasers. 7.2. Dependence of pulse duration on injection current, bias voltage and device geometry. 7.3. Radio frequency spectra of the emitted light. 7.4. Short-pulse optimisation. 7.5. Conclusion -- 8. Quantum dot random lasers. 8.1. Spatially inhomogeneous semiconductor quantum dot ensembles. 8.2. Coherence properties. 8.3. Random lasing in semiconductor quantum dot ensembles. 8.4. Conclusion -- 9. Coherence properties of quantum dot micro-cavity lasers. 9.1. Introduction. 9.2. Radial signal propagation and coherence trapping. 9.3. Influence of disorder. 9.4. Conclusions

Quantum Dot Devices

Quantum Dot Devices PDF Author: Zhiming M. Wang
Publisher: Springer Science & Business Media
ISBN: 1461435706
Category : Science
Languages : en
Pages : 375

Get Book Here

Book Description
Quantum dots as nanomaterials have been extensively investigated in the past several decades from growth to characterization to applications. As the basis of future developments in the field, this book collects a series of state-of-the-art chapters on the current status of quantum dot devices and how these devices take advantage of quantum features. Written by 56 leading experts from 14 countries, the chapters cover numerous quantum dot applications, including lasers, LEDs, detectors, amplifiers, switches, transistors, and solar cells. Quantum Dot Devices is appropriate for researchers of all levels of experience with an interest in epitaxial and/or colloidal quantum dots. It provides the beginner with the necessary overview of this exciting field and those more experienced with a comprehensive reference source.

Semiconductor Photonics of Nanomaterials and Quantum Structures

Semiconductor Photonics of Nanomaterials and Quantum Structures PDF Author: Arash Rahimi-Iman
Publisher: Springer Nature
ISBN: 303069352X
Category : Science
Languages : en
Pages : 288

Get Book Here

Book Description
This book introduces the wider field of functional nanomaterials sciences, with a strong emphasis on semiconductor photonics. Whether you are studying photonic quantum devices or just interested in semiconductor nanomaterials and their benefits for optoelectronic applications, this book offers you a pedagogical overview of the relevant subjects along with topical reviews. The book discusses different yet complementary studies in the context of ongoing international research efforts, delivering examples from both fundamental and applied research to a broad readership. In addition, a hand-full of useful optical techniques for the characterization of semiconductor quantum structures and materials are addressed. Moreover, nanostructuring methods for the production of low-dimensional systems, which exhibit advantageous properties predominantly due to quantum effects, are summarized. Science and engineering professionals in the interdisciplinary domains of nanotechnology, photonics, materials sciences, and quantum physics can familiarize themselves with selected highlights with eyes towards photonic applications in the fields of two-dimensional materials research, light–matter interactions, and quantum technologies.

Nonlinear Photonics Devices

Nonlinear Photonics Devices PDF Author: Luigi Sirleto
Publisher: MDPI
ISBN: 3039437216
Category : Mathematics
Languages : en
Pages : 212

Get Book Here

Book Description
The first nonlinear optical effect was observed in the 19th century by John Kerr. Nonlinear optics, however, started to grow up only after the invention of the laser, when intense light sources became easily available. The seminal studies by Peter Franken and Nicolaas Bloembergen, in the 1960s, paved the way for the development of today’s nonlinear photonics, the field of research that encompasses all the studies, designs, and implementations of nonlinear optical devices that can be used for the generation, communication, and processing of information. This field has attracted significant attention, partly due to the great potential of exploiting the optical nonlinearities of new or advanced materials to induce new phenomena and achieve new functions. According to Clarivate Web of Science, almost 200,000 papers were published that refer to the topic “nonlinear optic*”. Over 36,000 papers were published in the last four years (2015–2018) with the same keyword, and over 17,000 used the keyword “nonlinear photonic*”. The present Special Issue of Micromachines aims at reviewing the current state of the art and presenting perspectives of further development. Fundamental and applicative aspects are considered, with special attention paid to hot topics that may lead to technological and scientific breakthroughs.

Leading Edge Nanotechnology Research Developments

Leading Edge Nanotechnology Research Developments PDF Author: Donald M. Sabatini
Publisher: Nova Publishers
ISBN: 9781600219009
Category : Science
Languages : en
Pages : 324

Get Book Here

Book Description
Nanotechnology is a 'catch-all' description of activities at the level of atoms and molecules that have applications in the real world. A nanometer is a billionth of a meter, about 1/80,000 of the diameter of a human hair, or 10 times the diameter of a hydrogen atom. Nanotechnology is now used in precision engineering, new materials development as well as in electronics; electromechanical systems as well as mainstream biomedical applications in areas such as gene therapy, drug delivery and novel drug discovery techniques. This book present simportant breakthroughs in the field from around the world.

Quantum Dot Photodetectors

Quantum Dot Photodetectors PDF Author: Xin Tong
Publisher: Springer Nature
ISBN: 3030742709
Category : Technology & Engineering
Languages : en
Pages : 319

Get Book Here

Book Description
This book presents a comprehensive overview of state-of-the-art quantum dot photodetectors, including device fabrication technologies, optical engineering/manipulation strategies, and emerging photodetectors with building blocks of novel quantum dots (e.g. perovskite) as well as their hybrid structured (e.g. 0D/2D) materials. Semiconductor quantum dots have attracted much attention due to their unique quantum confinement effect, which allows for the facile tuning of optical properties that are promising for next-generation optoelectronic applications. Among these remarkable properties are large absorption coefficient, high photosensitivity, and tunable optical spectrum from ultraviolet/visible to infrared region, all of which are very attractive and favorable for photodetection applications. The book covers both fundamental and frontier research in order to stimulate readers' interests in developing novel ideas for semiconductor photodetectors at the center of future developments in materials science, nanofabrication technology and device commercialization. The book provides a knowledge sharing platform and can be used as a reference for researchers working in the fields of photonics, materials science, and nanodevices.

Colloidal Quantum Dot Optoelectronics and Photovoltaics

Colloidal Quantum Dot Optoelectronics and Photovoltaics PDF Author: Gerasimos Konstantatos
Publisher: Cambridge University Press
ISBN: 0521198267
Category : Science
Languages : en
Pages : 329

Get Book Here

Book Description
Captures the most up-to-date research in the field, written in an accessible style by the world's leading experts.

Nanotechnology for Microelectronics and Photonics

Nanotechnology for Microelectronics and Photonics PDF Author: Raúl José Martín-Palma
Publisher: Elsevier
ISBN: 0081011016
Category : Technology & Engineering
Languages : en
Pages : 340

Get Book Here

Book Description
Nanotechnology for Microelectronics and Photonics, Second Edition has been thoroughly revised, expanded, and updated. The aim of the book is to present the most recent advances in the field of nanomaterials, as well as the devices being developed for novel nanoelectronics and nanophotonic systems. It covers the many novel nanoscale applications in microelectronics and photonics that have been developed in recent years. Looking to the future, the book suggests what other applications are currently in development and may become feasible within the next few decades based on novel materials such as graphene, nanotubes, and organic semiconductors. In addition, the inclusion of new chapters and new sections to keep up with the latest developments in this rapidly-evolving field makes Nanotechnology for Microelectronics and Photonics, Second Edition an invaluable reference to research and industrial scientists looking for a guide on how nanostructured materials and nanoscale devices are used in microelectronics, optoelectronics, and photonics today and in future developments. - Presents the fundamental scientific principles that explain the novel properties and applications of nanostructured materials in the quantum frontier - Offers clear and concise coverage of how nanotechnology is currently used in the areas of microelectronics, optoelectronics, and photonics, as well as future proposed devices - Includes nearly a hundred problems along with helpful hints and full solutions for more than half of them

Carbon Quantum Dots for Sustainable Energy and Optoelectronics

Carbon Quantum Dots for Sustainable Energy and Optoelectronics PDF Author: Sudip Kumar Batabyal
Publisher: Elsevier
ISBN: 0323908969
Category : Technology & Engineering
Languages : en
Pages : 512

Get Book Here

Book Description
Carbon Quantum Dots for Sustainable Energy and Optoelectronics reviews the synthesis, properties, and applications of carbon nanodots. This book provides readers with an overview of the key advances in the development of carbon quantum dots including synthesis and surface engineering strategies such as pyrolysis-based synthesis, biomass-based synthesis, functionalization, and other methods toward large-scale development of these carbon nanomaterials. The emerging applications of carbon quantum dots in different fields, such as energy harvesting, energy storage, and biomedical applications, are thoroughly reviewed, emphasizing the impact of enhanced properties of carbon quantum dots for these applications. Carbon Quantum Dots for Sustainable Energy and Optoelectronics is suitable for graduate students, materials scientists, and engineers working in academia and industry. This book is also beneficial for the interdisciplinary community of researchers and practitioners working in the field of nanotechnology. - Introduces recent advances in the understanding of carbon quantum dots, including relevant synthesis and surface engineering strategies for their large-scale development - Provides an overview of the most relevant applications of carbon quantum dots for the development of sustainable technologies in optoelectronics and energy storage and production - Discusses future research directions and remaining challenges towards the commercial translation of carbon quantum dots

Emerging Nanomaterials for Energy Conversion and Storage Applications

Emerging Nanomaterials for Energy Conversion and Storage Applications PDF Author: Guohua Jia
Publisher: Frontiers Media SA
ISBN: 2889668886
Category : Science
Languages : en
Pages : 97

Get Book Here

Book Description