Author: Samrana Kazim
Publisher: Elsevier
ISBN: 0323954952
Category : Technology & Engineering
Languages : en
Pages : 504
Book Description
Photoelectrochemical Engineering for Solar Harvesting provides an up-to-date appraisal of the photon engineering of innovative catalysts for solar energy harvesting.Sunlight-driven fuel synthesis is the most sustainable and potentially economical option for producing energy vectors through water splitting. Thus this book focuses on the design of photocatalysts and water oxidation catalysts, as artificial photosynthesis and hydrogen fuel production via water oxidation (in place of fossil fuels) are two promising approaches towards renewable energy.The book critically analyzes the overall progress, potential challenges, and the possibility of industrialization of new catalysts in the near future. The primary emphasis of the discussion is on experimental approaches from materials synthesis to device applications, however, there will also be some introduction to relevant photochemistry concepts.Photoelectrochemical Engineering for Solar Harvesting is suitable for materials scientists and chemists who through the use of photonics are in continuous pursuit of improving the efficiencies of different devices used to capture solar energy for the generation of sustainable fuel. - Covers design of innovative energy materials such as photocatalysts and water oxidation catalysts for solar energy harvesting - Reviews briefly computational and theoretical approaches before providing comprehensive overview of experimental directions - Provides information to guide photon and photoelectrochemical engineering of catalysts for solar application
Photoelectrochemical Engineering for Solar Harvesting
Author: Samrana Kazim
Publisher: Elsevier
ISBN: 0323954952
Category : Technology & Engineering
Languages : en
Pages : 504
Book Description
Photoelectrochemical Engineering for Solar Harvesting provides an up-to-date appraisal of the photon engineering of innovative catalysts for solar energy harvesting.Sunlight-driven fuel synthesis is the most sustainable and potentially economical option for producing energy vectors through water splitting. Thus this book focuses on the design of photocatalysts and water oxidation catalysts, as artificial photosynthesis and hydrogen fuel production via water oxidation (in place of fossil fuels) are two promising approaches towards renewable energy.The book critically analyzes the overall progress, potential challenges, and the possibility of industrialization of new catalysts in the near future. The primary emphasis of the discussion is on experimental approaches from materials synthesis to device applications, however, there will also be some introduction to relevant photochemistry concepts.Photoelectrochemical Engineering for Solar Harvesting is suitable for materials scientists and chemists who through the use of photonics are in continuous pursuit of improving the efficiencies of different devices used to capture solar energy for the generation of sustainable fuel. - Covers design of innovative energy materials such as photocatalysts and water oxidation catalysts for solar energy harvesting - Reviews briefly computational and theoretical approaches before providing comprehensive overview of experimental directions - Provides information to guide photon and photoelectrochemical engineering of catalysts for solar application
Publisher: Elsevier
ISBN: 0323954952
Category : Technology & Engineering
Languages : en
Pages : 504
Book Description
Photoelectrochemical Engineering for Solar Harvesting provides an up-to-date appraisal of the photon engineering of innovative catalysts for solar energy harvesting.Sunlight-driven fuel synthesis is the most sustainable and potentially economical option for producing energy vectors through water splitting. Thus this book focuses on the design of photocatalysts and water oxidation catalysts, as artificial photosynthesis and hydrogen fuel production via water oxidation (in place of fossil fuels) are two promising approaches towards renewable energy.The book critically analyzes the overall progress, potential challenges, and the possibility of industrialization of new catalysts in the near future. The primary emphasis of the discussion is on experimental approaches from materials synthesis to device applications, however, there will also be some introduction to relevant photochemistry concepts.Photoelectrochemical Engineering for Solar Harvesting is suitable for materials scientists and chemists who through the use of photonics are in continuous pursuit of improving the efficiencies of different devices used to capture solar energy for the generation of sustainable fuel. - Covers design of innovative energy materials such as photocatalysts and water oxidation catalysts for solar energy harvesting - Reviews briefly computational and theoretical approaches before providing comprehensive overview of experimental directions - Provides information to guide photon and photoelectrochemical engineering of catalysts for solar application
Photoelectrochemical Hydrogen Production
Author: Roel van de Krol
Publisher: Springer Science & Business Media
ISBN: 146141380X
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
Photoelectrochemical Hydrogen Production describes the principles and materials challenges for the conversion of sunlight into hydrogen through water splitting at a semiconducting electrode. Readers will find an analysis of the solid state properties and materials requirements for semiconducting photo-electrodes, a detailed description of the semiconductor/electrolyte interface, in addition to the photo-electrochemical (PEC) cell. Experimental techniques to investigate both materials and PEC device performance are outlined, followed by an overview of the current state-of-the-art in PEC materials and devices, and combinatorial approaches towards the development of new materials. Finally, the economic and business perspectives of PEC devices are discussed, and promising future directions indicated. Photoelectrochemical Hydrogen Production is a one-stop resource for scientists, students and R&D practitioners starting in this field, providing both the theoretical background as well as useful practical information on photoelectrochemical measurement techniques. Experts in the field benefit from the chapters on current state-of-the-art materials/devices and future directions.
Publisher: Springer Science & Business Media
ISBN: 146141380X
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
Photoelectrochemical Hydrogen Production describes the principles and materials challenges for the conversion of sunlight into hydrogen through water splitting at a semiconducting electrode. Readers will find an analysis of the solid state properties and materials requirements for semiconducting photo-electrodes, a detailed description of the semiconductor/electrolyte interface, in addition to the photo-electrochemical (PEC) cell. Experimental techniques to investigate both materials and PEC device performance are outlined, followed by an overview of the current state-of-the-art in PEC materials and devices, and combinatorial approaches towards the development of new materials. Finally, the economic and business perspectives of PEC devices are discussed, and promising future directions indicated. Photoelectrochemical Hydrogen Production is a one-stop resource for scientists, students and R&D practitioners starting in this field, providing both the theoretical background as well as useful practical information on photoelectrochemical measurement techniques. Experts in the field benefit from the chapters on current state-of-the-art materials/devices and future directions.
Solar-to-Chemical Conversion
Author: Hongqi Sun
Publisher: John Wiley & Sons
ISBN: 3527825088
Category : Science
Languages : en
Pages : 480
Book Description
This comprehensive book systematically covers the fundamentals in solar energy conversion to chemicals, either fuels or chemical products. It includes natural photosynthesis with emphasis on artificial processes for solar energy conversion and utilization. The chemical processes of solar energy conversion via homogeneous and/or heterogeneous photocatalysis has been described with the mechanistic insights. It also consists of reaction systems toward a variety of applications, such as water splitting for hydrogen or oxygen evolution, photocatalytic CO2 reduction to fuels, and light driven N2 fixation, etc. This unique book offers the readers a broad view of solar energy utilization based on chemical processes and their perspectives for future sustainability.
Publisher: John Wiley & Sons
ISBN: 3527825088
Category : Science
Languages : en
Pages : 480
Book Description
This comprehensive book systematically covers the fundamentals in solar energy conversion to chemicals, either fuels or chemical products. It includes natural photosynthesis with emphasis on artificial processes for solar energy conversion and utilization. The chemical processes of solar energy conversion via homogeneous and/or heterogeneous photocatalysis has been described with the mechanistic insights. It also consists of reaction systems toward a variety of applications, such as water splitting for hydrogen or oxygen evolution, photocatalytic CO2 reduction to fuels, and light driven N2 fixation, etc. This unique book offers the readers a broad view of solar energy utilization based on chemical processes and their perspectives for future sustainability.
Nanomaterials For Energy Conversion And Storage
Author: Dunwei Wang
Publisher: World Scientific
ISBN: 1786343649
Category : Science
Languages : en
Pages : 836
Book Description
The use of nanomaterials in energy conversion and storage represents an opportunity to improve the performance, density and ease of transportation in renewable resources. This book looks at the most recent research on the topic, with particular focus on artificial photosynthesis and lithium-ion batteries as the most promising technologies to date. Research on the broad subject of energy conversion and storage calls for expertise from a wide range of backgrounds, from the most fundamental perspectives of the key catalytic processes at the molecular level to device scale engineering and optimization. Although the nature of the processes dictates that electrochemistry is a primary characterization tool, due attention is given to advanced techniques such as synchrotron studies in operando. These studies look at the gap between the performance of current technology and what is needed for the future, for example how to improve on the lithium-ion battery and to go beyond its capabilities.Suitable for students and practitioners in the chemical, electrochemical, and environmental sciences, Nanomaterials for Energy Conversion and Storage provides the information needed to find scalable, economically viable and safe solutions for sustainable energy.
Publisher: World Scientific
ISBN: 1786343649
Category : Science
Languages : en
Pages : 836
Book Description
The use of nanomaterials in energy conversion and storage represents an opportunity to improve the performance, density and ease of transportation in renewable resources. This book looks at the most recent research on the topic, with particular focus on artificial photosynthesis and lithium-ion batteries as the most promising technologies to date. Research on the broad subject of energy conversion and storage calls for expertise from a wide range of backgrounds, from the most fundamental perspectives of the key catalytic processes at the molecular level to device scale engineering and optimization. Although the nature of the processes dictates that electrochemistry is a primary characterization tool, due attention is given to advanced techniques such as synchrotron studies in operando. These studies look at the gap between the performance of current technology and what is needed for the future, for example how to improve on the lithium-ion battery and to go beyond its capabilities.Suitable for students and practitioners in the chemical, electrochemical, and environmental sciences, Nanomaterials for Energy Conversion and Storage provides the information needed to find scalable, economically viable and safe solutions for sustainable energy.
Solar Fuel Generation
Author: Yatendra S. Chaudhary
Publisher: CRC Press
ISBN: 131535344X
Category : Science
Languages : en
Pages : 248
Book Description
As the search for renewable sources of energy grows more urgent, more and more attention is focusing on the blueprint offered by biological photosynthesis for translating the energy of our Sun into energy rich molecules like H2 and carbohydrates, commonly known as "solar fuels." These solar fuels have enormous potential to store high densities of energy in the form of chemical bonds as well as being transportable. This book offers a complete overview of the promising approaches to solar fuel generation, including the direct pathways of solar H2 generation and CO2 photocatalytic reduction. Solar Fuel Generation is an invaluable tool for graduate students and researchers (especially chemists, physicists, and material scientists) working in this field.
Publisher: CRC Press
ISBN: 131535344X
Category : Science
Languages : en
Pages : 248
Book Description
As the search for renewable sources of energy grows more urgent, more and more attention is focusing on the blueprint offered by biological photosynthesis for translating the energy of our Sun into energy rich molecules like H2 and carbohydrates, commonly known as "solar fuels." These solar fuels have enormous potential to store high densities of energy in the form of chemical bonds as well as being transportable. This book offers a complete overview of the promising approaches to solar fuel generation, including the direct pathways of solar H2 generation and CO2 photocatalytic reduction. Solar Fuel Generation is an invaluable tool for graduate students and researchers (especially chemists, physicists, and material scientists) working in this field.
Photoelectrochemical Water Splitting
Author: Zhebo Chen
Publisher: Springer Science & Business Media
ISBN: 1461482984
Category : Science
Languages : en
Pages : 130
Book Description
This book outlines many of the techniques involved in materials development and characterization for photoelectrochemical (PEC) – for example, proper metrics for describing material performance, how to assemble testing cells and prepare materials for assessment of their properties, and how to perform the experimental measurements needed to achieve reliable results towards better scientific understanding. For each technique, proper procedure, benefits, limitations, and data interpretation are discussed. Consolidating this information in a short, accessible, and easy to read reference guide will allow researchers to more rapidly immerse themselves into PEC research and also better compare their results against those of other researchers to better advance materials development. This book serves as a “how-to” guide for researchers engaged in or interested in engaging in the field of photoelectrochemical (PEC) water splitting. PEC water splitting is a rapidly growing field of research in which the goal is to develop materials which can absorb the energy from sunlight to drive electrochemical hydrogen production from the splitting of water. The substantial complexity in the scientific understanding and experimental protocols needed to sufficiently pursue accurate and reliable materials development means that a large need exists to consolidate and standardize the most common methods utilized by researchers in this field.
Publisher: Springer Science & Business Media
ISBN: 1461482984
Category : Science
Languages : en
Pages : 130
Book Description
This book outlines many of the techniques involved in materials development and characterization for photoelectrochemical (PEC) – for example, proper metrics for describing material performance, how to assemble testing cells and prepare materials for assessment of their properties, and how to perform the experimental measurements needed to achieve reliable results towards better scientific understanding. For each technique, proper procedure, benefits, limitations, and data interpretation are discussed. Consolidating this information in a short, accessible, and easy to read reference guide will allow researchers to more rapidly immerse themselves into PEC research and also better compare their results against those of other researchers to better advance materials development. This book serves as a “how-to” guide for researchers engaged in or interested in engaging in the field of photoelectrochemical (PEC) water splitting. PEC water splitting is a rapidly growing field of research in which the goal is to develop materials which can absorb the energy from sunlight to drive electrochemical hydrogen production from the splitting of water. The substantial complexity in the scientific understanding and experimental protocols needed to sufficiently pursue accurate and reliable materials development means that a large need exists to consolidate and standardize the most common methods utilized by researchers in this field.
Solar Energy Sciences and Engineering Applications
Author: Napoleon Enteria
Publisher: CRC Press
ISBN: 0203762053
Category : Technology & Engineering
Languages : en
Pages : 685
Book Description
Solar energy is available all over the world in different intensities. Theoretically, the solar energy available on the surface of the earth is enough to support the energy requirements of the entire planet. However, in reality, progress and development of solar science and technology depends to a large extent on human desires and needs. This is du
Publisher: CRC Press
ISBN: 0203762053
Category : Technology & Engineering
Languages : en
Pages : 685
Book Description
Solar energy is available all over the world in different intensities. Theoretically, the solar energy available on the surface of the earth is enough to support the energy requirements of the entire planet. However, in reality, progress and development of solar science and technology depends to a large extent on human desires and needs. This is du
Photoelectrochemical Solar Cells
Author: Nurdan Demirci Sankir
Publisher: John Wiley & Sons
ISBN: 1119459974
Category : Science
Languages : en
Pages : 380
Book Description
This book provides a broad overall view of the photoelectrochemical systems for solar hydrogen generation, and new and novel materials for photoelectrochemical solar cell applications. Hydrogen has a huge potential as a safe and efficient energy carrier, which can be used directly in fuel cells to obtain electricity, or it can be used in the chemical industry, fossil fuel processing or ammonia production. However, hydrogen is not freely available in nature and it needs to be produced. Photoelectrochemical solar cells produce hydrogen from water using sunlight and specialized semiconductors, which use solar energy to directly dissociate water molecules into hydrogen and oxygen. Hence, these systems reduce fossil fuels dependency and curb carbon dioxide emissions. Photoelectrochemical Solar Cells compiles the objectives related to the new semiconductor materials and manufacturing techniques for solar hydrogen generation. The chapters are written by distinguished authors who have extensive experience in their fields. Multidisciplinary contributors from physics, chemical engineering, materials science, and electrical and electronic information engineering, provide an in-depth coverage of the topic. Readers and users have the opportunity to learn not only about the fundamentals but also the various aspects of the materials science and manufacturing technologies for photoelectrochemical solar cells and the hydrogen generation systems via photoelectrochemical conversion. This groundbreaking book features: Description of solar hydrogen generation via photoelectrochemical process Designs of photoelectrochemical systems Measurements and efficiency definition protocols for photoelectrochemical solar cells Metal oxides for solar water splitting Semiconductor photocatalysts Bismuth vanadate-based materials for solar water splitting Copper-based chalcopyrite and kesterite materials for solar water splitting Eutectic composites for solar water splitting Photocatalytic formation of composite electrodes
Publisher: John Wiley & Sons
ISBN: 1119459974
Category : Science
Languages : en
Pages : 380
Book Description
This book provides a broad overall view of the photoelectrochemical systems for solar hydrogen generation, and new and novel materials for photoelectrochemical solar cell applications. Hydrogen has a huge potential as a safe and efficient energy carrier, which can be used directly in fuel cells to obtain electricity, or it can be used in the chemical industry, fossil fuel processing or ammonia production. However, hydrogen is not freely available in nature and it needs to be produced. Photoelectrochemical solar cells produce hydrogen from water using sunlight and specialized semiconductors, which use solar energy to directly dissociate water molecules into hydrogen and oxygen. Hence, these systems reduce fossil fuels dependency and curb carbon dioxide emissions. Photoelectrochemical Solar Cells compiles the objectives related to the new semiconductor materials and manufacturing techniques for solar hydrogen generation. The chapters are written by distinguished authors who have extensive experience in their fields. Multidisciplinary contributors from physics, chemical engineering, materials science, and electrical and electronic information engineering, provide an in-depth coverage of the topic. Readers and users have the opportunity to learn not only about the fundamentals but also the various aspects of the materials science and manufacturing technologies for photoelectrochemical solar cells and the hydrogen generation systems via photoelectrochemical conversion. This groundbreaking book features: Description of solar hydrogen generation via photoelectrochemical process Designs of photoelectrochemical systems Measurements and efficiency definition protocols for photoelectrochemical solar cells Metal oxides for solar water splitting Semiconductor photocatalysts Bismuth vanadate-based materials for solar water splitting Copper-based chalcopyrite and kesterite materials for solar water splitting Eutectic composites for solar water splitting Photocatalytic formation of composite electrodes
Photoelectrochemical Water Splitting
Author: H.- J. Lewerenz
Publisher: Royal Society of Chemistry
ISBN: 1849736472
Category : Science
Languages : en
Pages : 497
Book Description
There has been a resurgence of interest in light-induced water splitting as the search for storable carbon neutral energy becomes more urgent. Although the history of the basic idea dates back more than four decades, efficient, economical and stable integrated devices have yet to be realized. In the continuing quest for such devices, the field of photoelectrochemistry is entering a new phase where the extraordinary interdisciplinary of the research and development efforts are opening new avenues. This aspect of current research effort is reflected in the chapters of this book, which encompass present thinking in the various disciplines such as materials science, photo-electrochemistry and interfaces that can contribute to realization of viable solar fuel generators. This book presents a blend of the background science and recent advances in the field of photoelectrochemical water splitting, and includes aspects that point towards medium to long term future realization. The content of the book goes beyond the more traditional approaches to the subject by including topics such as novel excitation energy processes that have only been realized so far in advanced photonics. The comprehensive overview of current activities and development horizons provided by the impressive collection of internationally renowned authors therefore represents a unique reflection of current thinking regarding water splitting by light.
Publisher: Royal Society of Chemistry
ISBN: 1849736472
Category : Science
Languages : en
Pages : 497
Book Description
There has been a resurgence of interest in light-induced water splitting as the search for storable carbon neutral energy becomes more urgent. Although the history of the basic idea dates back more than four decades, efficient, economical and stable integrated devices have yet to be realized. In the continuing quest for such devices, the field of photoelectrochemistry is entering a new phase where the extraordinary interdisciplinary of the research and development efforts are opening new avenues. This aspect of current research effort is reflected in the chapters of this book, which encompass present thinking in the various disciplines such as materials science, photo-electrochemistry and interfaces that can contribute to realization of viable solar fuel generators. This book presents a blend of the background science and recent advances in the field of photoelectrochemical water splitting, and includes aspects that point towards medium to long term future realization. The content of the book goes beyond the more traditional approaches to the subject by including topics such as novel excitation energy processes that have only been realized so far in advanced photonics. The comprehensive overview of current activities and development horizons provided by the impressive collection of internationally renowned authors therefore represents a unique reflection of current thinking regarding water splitting by light.
Photoelectrochemical Solar Fuel Production
Author: Sixto Giménez
Publisher: Springer
ISBN: 3319296418
Category : Technology & Engineering
Languages : en
Pages : 574
Book Description
This book explores the conversion for solar energy into renewable liquid fuels through electrochemical reactions. The first section of the book is devoted to the theoretical fundamentals of solar fuels production, focusing on the surface properties of semiconductor materials in contact with aqueous solutions and the reaction mechanisms. The second section describes a collection of current, relevant characterization techniques, which provide essential information of the band structure of the semiconductors and carrier dynamics at the interface semiconductor. The third, and last section comprises the most recent developments in materials and engineered structures to optimize the performance of solar-to-fuel conversion devices.
Publisher: Springer
ISBN: 3319296418
Category : Technology & Engineering
Languages : en
Pages : 574
Book Description
This book explores the conversion for solar energy into renewable liquid fuels through electrochemical reactions. The first section of the book is devoted to the theoretical fundamentals of solar fuels production, focusing on the surface properties of semiconductor materials in contact with aqueous solutions and the reaction mechanisms. The second section describes a collection of current, relevant characterization techniques, which provide essential information of the band structure of the semiconductors and carrier dynamics at the interface semiconductor. The third, and last section comprises the most recent developments in materials and engineered structures to optimize the performance of solar-to-fuel conversion devices.