Photocatalytic Performance of Nitrogen-platinum Group Metal Co-doped TiO2 Supported on Carbon Nanotubes for Visible-light Degradation of Organic Pollutants in Water

Photocatalytic Performance of Nitrogen-platinum Group Metal Co-doped TiO2 Supported on Carbon Nanotubes for Visible-light Degradation of Organic Pollutants in Water PDF Author: Alex Tawanda Kuvarega
Publisher:
ISBN:
Category : Carbon
Languages : en
Pages : 536

Get Book Here

Book Description


Nanoelectrocatalysts for Energy and Water Treatment

Nanoelectrocatalysts for Energy and Water Treatment PDF Author: Kumar Raju (Writer on nanostructured materials)
Publisher: Springer Nature
ISBN: 3031553292
Category : Electrocatalysis
Languages : en
Pages : 502

Get Book Here

Book Description
Nanomaterials have recently garnered significant attention and practical importance for heterogeneous electrocatalysis. This book presents recent developments in the design, synthesis, and characterisation of nanostructured electrocatalytic materials, with a focus on applications to energy and wastewater treatment. Electrocatalytic nanomaterials can enhance process efficiency and sustainability, thus providing innovative solutions for a wide array of areas such as sustainable energy production, conversion, and wastewater treatment. Readers will gain insights into the latest breakthroughs in electrocatalysis and the activity of nanomaterials in energy conversion applications, e.g., fuel cells, hydrogen production, water splitting, and electro/photocatalytic water splitting, as well as for wastewater treatment. The book explores the development of advanced electrocatalysts, particularly hybrid materials.

Synthesis and Characterization of Nitrogen-doped Titanium Oxide Nanoparticles for Visible-light Photocatalytic Wastewater Treatment

Synthesis and Characterization of Nitrogen-doped Titanium Oxide Nanoparticles for Visible-light Photocatalytic Wastewater Treatment PDF Author: Mohammad Ali Pelaschi
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
TiO2 nanoparticles are one of the most suitable materials for photocatalysis, specifically for water and air treatment and removal of a wide variety of organic pollutants such as dyes, aromatic compounds, and chlorinated aromatic compounds. Methods of synthesis of TiO2 are generally categorized in two main classes of wet chemical, and dry methods. Wet chemical methods generally provide a better control over size, size distribution, and shape; all of which significantly affect photocatalytic performance of the produced nanoparticles. Despite its advantages over other semiconductor photocatalysts, wide band-gap of titania restrains its photocatalytic activity to only UV light, which only makes up to 5% of the light reaching surface of the earth. To induce visible-light activity, titania has been doped by different dopants, including transition metal-dopants such as Fe, and Co and non-metal dopants such as N, and C. Nitrogen has been shown to be a better dopant, providing a suitably placed energy state within the band-gap of TiO2, and not suffering from issues related to transition-metal dopants such as low thermal and physical stability and high electron-hole recombination rates. To dope titania with nitrogen, one could add the nitrogen source together with other precursors during synthesis, referred to as wet chemical doping methods, or anneal the synthesized titania nanoparticles under a flow of ammonia at high temperatures, referred to as dry doping methods. While different doping methods have been studied individually, the author maintains that there has been an absence of research comparing the effectiveness of these methods, on photocatalytic performance of N-doped TiO2 within a consistent experiment. In this research TiO2 nanoparticles were synthesized by a facile, inexpensive sol-gel method, and doping was done by wet chemical methods, dry methods, and a combination of both these methods. Visible-light photocatalytic activity of these nanoparticles was evaluated by their efficiency in degradation of methyl orange. The results show wet doping methods increase the efficiency of titania nanoparticles more than dry doping, or combination of both. Further investigation showed that the main reason for higher activity of wet chemically doped nanoparticles is due to their higher available surface area of 131.7 m2.g-1. After normalizing the available surface area, measured by the BET method, it was shown that a combination of wet chemical doping, and dry doping at 600 °C result in the most active nanoparticles, but high temperature dry doping severely decreases the surface area, lowering the overall efficiency of the product. Additionally, N-doped TiO2 nanoparticles were synthesized using a simple hydrothermal method, in which the nitrogen source was used not only to dope, but also to control shape, size, size distribution, and morphology of the titania nanoparticles, and to induce aqueous colloidal stability. It was shown that addition of triethylamine during the synthesis, results in ultra-small, colloidally stable, cubic TiO2 nanoparticles, while using triethanolamine results in formation of TiO2 pallets, assembled into spherical, rose-like structures. The synthesized nanoparticles show impressive efficiency in visible-light removal of phenol, 4-chlorophenol, and pentachlorophenol, achieving 100% degradation of a 100-ppm phenol solution in 90 min, more than 98% degradation of a 20-ppm 4-chlorophenol solution in 90 min, and 97% degradation of a 10-ppm pentachlorophenol in 180 min with 500 ppm loading of the catalyst in all cases. Moreover, synthesized nanoparticles showed no sign of deactivation after 5 consecutive runs, removing 4-chlorophenol, showing their reusability.

Photocatalytic Activity Enhancement of Titanium Dioxide Nanoparticles

Photocatalytic Activity Enhancement of Titanium Dioxide Nanoparticles PDF Author: Mohamed A. Barakat
Publisher: Springer
ISBN: 3319242717
Category : Science
Languages : en
Pages : 39

Get Book Here

Book Description
In this brief, a comprehensive review of the UV/visible-TiO2 photocatalytic oxidation process is presented with an insight into the mechanisms involved, the role of titanium dioxide as a catalyst, irradiation sources, types of reactors, and a comparison between various modes of TiO2 application. An overview of the development and enhancement of the activity of TiO2 nanoparticles in photocatalysis is presented. The topics covered include a detailed look at the unique properties of the TiO2 nanoparticles and their relationship to photocatalytic properties. The utilization of the TiO2 nanoparticles as photocatalysts, in the non-doped and doped forms is also reviewed. Finally, the use of modified TiO2 nanoparticles has made a significant contribution in providing definitive mechanistic information regarding the visible light photocatalytic processes.

Nanophotocatalysis and Environmental Applications

Nanophotocatalysis and Environmental Applications PDF Author: Inamuddin
Publisher: Springer
ISBN: 3030126196
Category : Science
Languages : en
Pages : 277

Get Book Here

Book Description
This book will be a guiding path to understand the photocatalytic process and mechanism for the deterioration of heavy metals, persistent organic pollutants and pathogens from wastewater. Environmental remediation is of crucial importance in the context of human sustainability in the present and future times. The unplanned anthropogenic activities and revolutionary industrialization end up in environmental contamination with noxious organic-inorganic and biogenic pollutants. The photocatalytic disinfection and detoxification is the only solution to preserve and restore the ecological balance. The main emphasis is to explore and enhance the photocatalytic potentials of solar active-materials.

Titanium Dioxide Photocatalysis

Titanium Dioxide Photocatalysis PDF Author: Vladimiro Dal Santo
Publisher: MDPI
ISBN: 3038976946
Category : Science
Languages : en
Pages : 208

Get Book Here

Book Description
Although the seminal work of Fujishima et al. dates back to 1971, TiO2 still remains the most diffused and studied semiconductor, employed in photo-oxidation processes for cleantech (i.e., polluted water and air treatment), in solar fuel production (mainly hydrogen production by water photo splitting), and in Carbon Capture and Utilization (CCU) processes by CO2 photoreduction. The eleven articles, among them three reviews, in this book cover recent results and research trends of various aspects of titanium dioxide photocatalysis, with the chief aim of improving the final efficiency of TiO2-based materials. Strategies include doping, metal co-catalyst deposition, and the realization of composites with plasmonic materials, other semiconductors, and graphene. Photocatalysts with high efficiency and selectivity can be also obtained by controlling the precise crystal shape (and homogeneous size) and the organization in superstructures from ultrathin films to hierarchical nanostructures. Finally, the theoretical modeling of TiO2 nanoparticles is discussed and highlighted. The range of topics addressed in this book will stimulate the reader’s interest as well as provide a valuable source of information for researchers in academia and industry.

Photocatalysts

Photocatalysts PDF Author: Sher Bahadar Khan
Publisher: BoD – Books on Demand
ISBN: 178985475X
Category : Science
Languages : en
Pages : 158

Get Book Here

Book Description
This book enlightens the type, chemical structure, and application of photo-catalysts. It covers the recent developments in photo-catalysts and their applications, particularly in photo-catalytic degradation of different organic pollutants, hydrogen production, etc. It provides a concise but complete coverage and overview of photocatalysts and their recent advances for a broad audience: beginners, graduate students, and specialists in both academic and industrial sectors.

Homogeneous and Heterogeneous Photocatalysis

Homogeneous and Heterogeneous Photocatalysis PDF Author: E. PELIZZETTI
Publisher: Springer Science & Business Media
ISBN: 9400946422
Category : Science
Languages : en
Pages : 720

Get Book Here

Book Description
Ever since the oil crisis of 1973, researchers in various fields of chemistry have proposed various schemes to conserve energy, as well to convert the sun's abundant and limitless supply of energy to produce chemical fuels (e. g. , hydrogen from water, . •. ). The enthusiasm had no previous parallel in the mid-1970's. Unfortunately, despite the several good proposals, the results have proven - in retrospect - somewhat disappointing from an economic viable point of view. The reasons for the meagre results are manyfold not the least of which are the experimental difficulties encountered in storage systems. Moreover, the lack of a concerted, well orchestrated interdisciplinary approach has been significant. By contrast, the chemical advances made in the understanding of the processes involved in such schemes have been phenomenal. A recent book on this issue ( M. Gratzel, Energy Resources through Photochemistry and Catalysis, 1983) is witness to the various efforts and approaches taken by researchers. In the recent years, many more groups have joined in these efforts, and the number of papers in the lit~rature is staggering ! One of the motives for organizing this NATO Advanced Research Workshop stemmed from our view that it was time to take stock of the accomplishments and rather than propose new schemes, it was time to consider seriously avenues that are most promising.

Semiconductor Photocatalysis

Semiconductor Photocatalysis PDF Author: Wenbin Cao
Publisher: BoD – Books on Demand
ISBN: 9535124846
Category : Science
Languages : en
Pages : 678

Get Book Here

Book Description
Photocatalysis is a hot topic because it is an environmentally friendly approach toward the conversion of light energy into chemical energy at mild reaction environments. Also, it is well applied in several major areas such as water splitting, bacterial inactivation, and pollutants elimination, which is a possible solution to energy shortage and environmental issues. The fundamental knowledge and the frontier research progress in typical photocatalytic materials, such as TiO2-based and non-TiO2-based photocatalysts, are included in this book. Methods to improve the photocatalytic efficiency and to provide a hint for the rational design of the new photocatalysts are covered.

Green Photocatalytic Semiconductors

Green Photocatalytic Semiconductors PDF Author: Seema Garg
Publisher: Springer Nature
ISBN: 303077371X
Category : Science
Languages : en
Pages : 855

Get Book Here

Book Description
This book comprises a detailed overview on the role of photocatalysts for environmental remediation, hydrogen production and carbon dioxide reduction. Effective ways to enhance the photocatalytic activity of the material via doping, hybrid material, laser light and nanocomposites have been discussed in this book. The book also further elaborates the role of metal nanoparticles, rare earth doping, sensitizers, surface oxygen vacancy, interface engineering and band gap engineering for enhancing the photocatalytic activity. An approach to recover the photocatalytic material via immobilization is also presented. This book brings to light much of the recent research in the development of such semiconductor photocatalytic systems. The book will thus be of relevance to researchers in the field of: material science, environmental science & technology, photocatalytic applications, newer methods of energy generation & conversion and industrial applications.