Phonon Sensor Dynamics for Cryogenic Dark Matter Search Experiment

Phonon Sensor Dynamics for Cryogenic Dark Matter Search Experiment PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 219

Get Book Here

Book Description
Understanding the quasiparticle diffusion process inside sputtered aluminum (Al thin films (~ 0.1-1 [mu]m is critical for the Cryogenic Dark Matter Search (CDMS experiment to further optimize its detectors to directly search for dark matter. An initial study with Al films was undertaken by our group ~ 20 years ago, but some important questions were not answered at the time. This thesis can be considered a continuation of that critical study. The CDMS experiment utilizes high purity silicon and germanium crystals to simultaneously measure ionization and phonons created by particle interactions. In addition to describing some of the rich physics involved in simultaneously detecting ionization and phonons with a CDMS detector, this thesis focuses on the detailed physics of the phonon sensors themselves, which are patterned onto CDMS detector surfaces. CDMS detectors use thin sputtered Al films to collect phonon energy when it propagates to the surfaces of the detector crystals. The phonon energy breaks Cooper pairs and creates quasiparticles (qps). These qps diffuse until they get trapped in an proximitized "overlap" region where lower-Tc tungsten films connect to the Al film. These tungsten films are the transition edge sensors (W-TESs CDMS uses to readout phonon signals. We performed a wide range of experiments using several sets of test devices designed and fabricated specifically for this work. The devices were used mostly to study quasiparticle (qp transport in Al films and qp transmission through Al/W interfaces. The results of this work are being used to optimize the design of detectors for SuperCDMS SNOLAB. This thesis is intended for CDMS collaborators who are interested in knowing more about the detailed fundamentals of how our phonon sensors work so they can take full advantage of their benefits. However, this work can also be read by general readers who are interested in particle detection using TES technology. This thesis contains eight chapters. The first chapter gives basic background information about dark matter and searches for it. We then describe the basic CDMS detector technology in Chapter two. Chapter three focuses on superconductivity and explains some of the solid state physic most relevant to our Al and W film studies. We then turn our attention to the fabrication processes used to make test devices, and describe some of the studies done to characterize our W and Al film properties. Chapter five explains the experimental setup including how a 3He/4He dilution refrigerator works, and how our electronics were configured. We then get to chapter six where we present key experimental results. Chapter seven covers the TES model we used for our test devices to simulate the data pulse shapes and reconstruct the pulse energies. We also describe the diffusion models used to fit our data. Finally, we end with a short summary of our findings and provide a few suggestions for future studies.

Phonon Sensor Dynamics for Cryogenic Dark Matter Search Experiment

Phonon Sensor Dynamics for Cryogenic Dark Matter Search Experiment PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 219

Get Book Here

Book Description
Understanding the quasiparticle diffusion process inside sputtered aluminum (Al thin films (~ 0.1-1 [mu]m is critical for the Cryogenic Dark Matter Search (CDMS experiment to further optimize its detectors to directly search for dark matter. An initial study with Al films was undertaken by our group ~ 20 years ago, but some important questions were not answered at the time. This thesis can be considered a continuation of that critical study. The CDMS experiment utilizes high purity silicon and germanium crystals to simultaneously measure ionization and phonons created by particle interactions. In addition to describing some of the rich physics involved in simultaneously detecting ionization and phonons with a CDMS detector, this thesis focuses on the detailed physics of the phonon sensors themselves, which are patterned onto CDMS detector surfaces. CDMS detectors use thin sputtered Al films to collect phonon energy when it propagates to the surfaces of the detector crystals. The phonon energy breaks Cooper pairs and creates quasiparticles (qps). These qps diffuse until they get trapped in an proximitized "overlap" region where lower-Tc tungsten films connect to the Al film. These tungsten films are the transition edge sensors (W-TESs CDMS uses to readout phonon signals. We performed a wide range of experiments using several sets of test devices designed and fabricated specifically for this work. The devices were used mostly to study quasiparticle (qp transport in Al films and qp transmission through Al/W interfaces. The results of this work are being used to optimize the design of detectors for SuperCDMS SNOLAB. This thesis is intended for CDMS collaborators who are interested in knowing more about the detailed fundamentals of how our phonon sensors work so they can take full advantage of their benefits. However, this work can also be read by general readers who are interested in particle detection using TES technology. This thesis contains eight chapters. The first chapter gives basic background information about dark matter and searches for it. We then describe the basic CDMS detector technology in Chapter two. Chapter three focuses on superconductivity and explains some of the solid state physic most relevant to our Al and W film studies. We then turn our attention to the fabrication processes used to make test devices, and describe some of the studies done to characterize our W and Al film properties. Chapter five explains the experimental setup including how a 3He/4He dilution refrigerator works, and how our electronics were configured. We then get to chapter six where we present key experimental results. Chapter seven covers the TES model we used for our test devices to simulate the data pulse shapes and reconstruct the pulse energies. We also describe the diffusion models used to fit our data. Finally, we end with a short summary of our findings and provide a few suggestions for future studies.

Phonon Sensor Dynamics for Cryogenic Dark Matter Search Experiment

Phonon Sensor Dynamics for Cryogenic Dark Matter Search Experiment PDF Author: Jeffrey Jyh-Chung Yen
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Optimizing the Design and Analysis of Cryogenic Semiconductor Dark Matter Detectors for Maximum Sensitivity

Optimizing the Design and Analysis of Cryogenic Semiconductor Dark Matter Detectors for Maximum Sensitivity PDF Author: Matt Christopher Pyle
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
For the past 15 years, the Cryogenic Dark Matter Search or CDMS has searched for Weekly Interacting Massive Particle dark matter (WIMPs) using Ge and Si semiconductor crystals instrumented with both ionization and athermal phonon sensors so that the much more common electron recoil leakage caused by photons and [beta]s from naturally present radioactive elements can be easily distinguished from elastic WIMP nucleon interactions by looking at the fraction of total recoil energy which ends up as potential energy of e/h pairs. Due to electronic carrier trapping at the surface of our semiconductor crystals, electron recoils which occur near the surface have suppressed ionization measurements and can not be distinguished from WIMP induced nuclear recoils and thus sensitivity to the WIMP nucleon interaction cross section was driven in CDMS II by our ability to define a full 3D fiducial volume in which all events had full collection. To remain background free and maximally sensitive to the WIMPnucleus interaction cross section, we must improve our 3D fiducial volume definition at the same rate as we scale the mass of the detector, and thus proposed next generation experiments with an order of magnitude increase in active mass were unfortunately not possible with our previous CDMS II detector design, and a new design with significantly improved fiducialization performance is required. In this thesis, we illustrate how the complex E-field geometry produced by interdigitated electrodes at alternating voltage biases naturally encodes 3D fiducial volume information into the charge and phonon signals and thus is a natural geometry for our next generation dark matter detectors. Secondly, we will study in depth the physics of import to our devices including transition edge sensor dynamics, quasi- particle dynamics in our Al collection fins, and phonon physics in the crystal itself so that we can both understand the performance of our previous CDMS II device as well as optimize the design of our future devices. Of interest to the broader physics community is the derivation of the ideal athermal phonon detector resolution and it's cubic temperature scaling behavior which suggests that the athermal phonon detector technology developed by CDMS could also be used to discover coherent neutrino scattering and search for non-standard neutrino interaction and sterile neutrinos. These proposed resolution optimized devices can also be used in searches for exotic MeV-GeV dark matter as well as novel background free searches for 8GeV light WIMPs. Initial performance studies of our first two next generation iZIP detectors at the University of California Berkeley CDMS test facility indicate that electron recoil surface event misidentification is 2x10-5 ±2.5x10-5 (90%CL) for a recoil energy range of 8keVr-60keVr strongly indicating that z fiducial volume performance will not limit our WIMP sensitivity in next generation experiments. Furthermore, phonon only fiducial volume selections were created for nuclear recoil energies 2keVr suggesting that phonon only background free or background subtracting light WIMP mass experiments are potentially viable.

Optimizing the Design and Analysis of Cryogenic Semiconductor Dark Matter Detectors for Maximum Sensitivity

Optimizing the Design and Analysis of Cryogenic Semiconductor Dark Matter Detectors for Maximum Sensitivity PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 291

Get Book Here

Book Description
In this thesis, we illustrate how the complex E- field geometry produced by interdigitated electrodes at alternating voltage biases naturally encodes 3D fiducial volume information into the charge and phonon signals and thus is a natural geometry for our next generation dark matter detectors. Secondly, we will study in depth the physics of import to our devices including transition edge sensor dynamics, quasi- particle dynamics in our Al collection fins, and phonon physics in the crystal itself so that we can both understand the performance of our previous CDMS II device as well as optimize the design of our future devices. Of interest to the broader physics community is the derivation of the ideal athermal phonon detector resolution and it's T3 c scaling behavior which suggests that the athermal phonon detector technology developed by CDMS could also be used to discover coherent neutrino scattering and search for non-standard neutrino interaction and sterile neutrinos. These proposed resolution optimized devices can also be used in searches for exotic MeV-GeV dark matter as well as novel background free searches for 8GeV light WIMPs.

Cryogenic Phonon-mediated Particle Detectors for Dark Matter Searches and Neutrino Physics

Cryogenic Phonon-mediated Particle Detectors for Dark Matter Searches and Neutrino Physics PDF Author: Adrian Tae-Jin Lee
Publisher:
ISBN:
Category :
Languages : en
Pages : 552

Get Book Here

Book Description


A Cryogenic Phonon Detector to Search for Dark Matter Particles

A Cryogenic Phonon Detector to Search for Dark Matter Particles PDF Author: Ning Wang
Publisher:
ISBN:
Category :
Languages : en
Pages : 452

Get Book Here

Book Description


Testing and Characterization of SuperCDMS Dark Matter Detectors

Testing and Characterization of SuperCDMS Dark Matter Detectors PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 172

Get Book Here

Book Description
The Cryogenic Dark Matter Search (SuperCDMS) relies on collection of phonons and charge carriers in semiconductors held at tens of milliKelvin as handles for detection of Weakly Interacting Massive Particles (WIMPs). This thesis begins with a brief overview of the direct dark matter search (Chapter 1) and SuperCDMS detectors (Chapter 2). In Chapter 3, a 3He evaporative refrigerator facility is described. Results from experiments performed in-house at Stanford to measure carrier transport in high-purity germanium (HPGe) crystals operated at sub-Kelvin temperatures are presented in Chapter 4. Finally, in Chapter 5 a new numerical model and a time-domain optimal filtering technique are presented, both developed for use with superconducting Transition Edge Sensors (TESs), that provide excellent event reconstruction for single particle interactions in detectors read out with superconducting W-TESs coupled to energy-collecting films of Al. This thesis is not intended to be read straight through. For those new to CDMS or dark matter searches, the first two chapters are meant to be a gentle introduction for experimentalists. They are by no means exhaustive. The remaining chapters each stand alone, with different audiences.

First Results from the Cryogenic Dark Matter Search Experiment at the Deep Site

First Results from the Cryogenic Dark Matter Search Experiment at the Deep Site PDF Author: Vuk Mandic
Publisher:
ISBN:
Category :
Languages : en
Pages : 922

Get Book Here

Book Description


Testing and Characterization of SuperCDMS Dark Matter Detectors

Testing and Characterization of SuperCDMS Dark Matter Detectors PDF Author: Benjamin Shank
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Cryogenic Dark Matter Search (SuperCDMS) relies on collection of phonons and charge carriers in semiconductors held at tens of milliKelvin as handles for detection of Weakly Interacting Massive Particles (WIMPs). This thesis begins with a brief overview of the direct dark matter search (Chapter 1) and SuperCDMS detectors (Chapter 2). In Chapter 3, a 3He evaporative refrigerator facility is described. Results from experiments performed in-house at Stanford to measure carrier transport in high-purity germanium (HPGe) crystals operated at sub-Kelvin temperatures are presented in Chapter 4. Finally, in Chapter 5 a new numerical model and a time-domain optimal filtering technique are presented, both developed for use with superconducting Transition Edge Sensors (TESs), that provide excellent event reconstruction for single particle interactions in detectors read out with superconducting W-TESs coupled to energy-collecting films of Al.

Phonon-mediated Detection of Elementary Particles Using Silicon Crystal Acoustic Detectors

Phonon-mediated Detection of Elementary Particles Using Silicon Crystal Acoustic Detectors PDF Author: Betty A. Young
Publisher:
ISBN:
Category :
Languages : en
Pages : 314

Get Book Here

Book Description