Author: Jean Cleymans
Publisher: Springer Science & Business Media
ISBN: 3642878210
Category : Science
Languages : en
Pages : 377
Book Description
The 6th Advanced Course in Theoretical Physics was held at the University of Cape Town, January 8-19, 1990. The topic of the course was "Phase Structure of Strongly Interacting Matter". There were ten invited speakers from overseas, each having up to six hours in which to present his field of research to a relatively small audience of about 50 participants. This allowed for the presentation of a broad, coherent and pedagogical review of the present status of the field. In addition there were several one-hour presentations by local participants. The main emphasis of the course was on the study of the properties of high density hot nuclear matter. This field is of particular interest because of the belief that a deconfined quark-gluon plasma could be created in such an environment when the temperature reaches about 200MeV. In the nuclear regime a so-called "liquid-to-gas" phase transition is expected at a temperature of approximately 10- 20MeV. Both of these topics received ample attention at the school. Owing the nature of the field, there exists much overlapping interest from both the nuclear physics and high-energy particle physics communities. It is hoped that these proceedings will contribute to building a bridge between the two groups.
Phase Structure of Strongly Interacting Matter
Author: Jean Cleymans
Publisher: Springer Science & Business Media
ISBN: 3642878210
Category : Science
Languages : en
Pages : 377
Book Description
The 6th Advanced Course in Theoretical Physics was held at the University of Cape Town, January 8-19, 1990. The topic of the course was "Phase Structure of Strongly Interacting Matter". There were ten invited speakers from overseas, each having up to six hours in which to present his field of research to a relatively small audience of about 50 participants. This allowed for the presentation of a broad, coherent and pedagogical review of the present status of the field. In addition there were several one-hour presentations by local participants. The main emphasis of the course was on the study of the properties of high density hot nuclear matter. This field is of particular interest because of the belief that a deconfined quark-gluon plasma could be created in such an environment when the temperature reaches about 200MeV. In the nuclear regime a so-called "liquid-to-gas" phase transition is expected at a temperature of approximately 10- 20MeV. Both of these topics received ample attention at the school. Owing the nature of the field, there exists much overlapping interest from both the nuclear physics and high-energy particle physics communities. It is hoped that these proceedings will contribute to building a bridge between the two groups.
Publisher: Springer Science & Business Media
ISBN: 3642878210
Category : Science
Languages : en
Pages : 377
Book Description
The 6th Advanced Course in Theoretical Physics was held at the University of Cape Town, January 8-19, 1990. The topic of the course was "Phase Structure of Strongly Interacting Matter". There were ten invited speakers from overseas, each having up to six hours in which to present his field of research to a relatively small audience of about 50 participants. This allowed for the presentation of a broad, coherent and pedagogical review of the present status of the field. In addition there were several one-hour presentations by local participants. The main emphasis of the course was on the study of the properties of high density hot nuclear matter. This field is of particular interest because of the belief that a deconfined quark-gluon plasma could be created in such an environment when the temperature reaches about 200MeV. In the nuclear regime a so-called "liquid-to-gas" phase transition is expected at a temperature of approximately 10- 20MeV. Both of these topics received ample attention at the school. Owing the nature of the field, there exists much overlapping interest from both the nuclear physics and high-energy particle physics communities. It is hoped that these proceedings will contribute to building a bridge between the two groups.
Phase Structure of Strongly Interacting Matter
Author: Jean Cleymans
Publisher:
ISBN: 9783642878220
Category :
Languages : en
Pages : 384
Book Description
This volume deals with strong interactions in nuclear and elementary particle physics, especially the phase structure of nuclei and particles at finite temperatures and densities. Areas covered include phase transitions in nuclei at low temperatures, nuclear reactions at relativistic energies, perturbative quantum chromodynamics, and chiral symmetry. In addition to the survey lectures, the volume also contains topical papers directly related to the theme.
Publisher:
ISBN: 9783642878220
Category :
Languages : en
Pages : 384
Book Description
This volume deals with strong interactions in nuclear and elementary particle physics, especially the phase structure of nuclei and particles at finite temperatures and densities. Areas covered include phase transitions in nuclei at low temperatures, nuclear reactions at relativistic energies, perturbative quantum chromodynamics, and chiral symmetry. In addition to the survey lectures, the volume also contains topical papers directly related to the theme.
Extreme States of Matter in Strong Interaction Physics
Author: Helmut Satz
Publisher: Springer Science & Business Media
ISBN: 3642239072
Category : Science
Languages : en
Pages : 245
Book Description
The thermodynamics of strongly interacting matter has become a profound and challenging area of modern physics, both in theory and in experiment. Statistical quantum chromodynamics, through analytical as well as numerical studies, provides the main theoretical tool, while in experiment, high-energy nuclear collisions are the key for extensive laboratory investigations. The field therefore straddles statistical, particle and nuclear physics, both conceptually and in the methods of investigation used. This course-tested primer addresses above all the many young scientists starting their scientific research in this field, providing them with a general, self-contained introduction that emphasizes in particular the basic concepts and ideas, with the aim of explaining why we do what we do. To achieve this goal, the present text concentrates mainly on equilibrium thermodynamics: first, the fundamental ideas of strong interaction thermodynamics are introduced and then the main concepts and methods used in the study of the physics of complex systems are summarized. Subsequently, simplified phenomenological pictures, leading to critical behavior in hadronic matter and to hadron-quark phase transitions are introduced, followed by elements of finite-temperature lattice QCD leading to the important results obtained in computer simulation studies of the lattice approach. Next, the relation of the resulting critical behavior to symmetry breaking/restoration in QCD is clarified before the text turns to the study of the QCD phase diagram. The presentation of bulk equilibrium thermodynamics is completed by studying the properties of the quark-gluon plasma as new state of strongly interacting matter. The final chapters of the book are devoted to more specific topics which arise when nuclear collisions are considered as a tool for the experimental study of QCD thermodynamics.
Publisher: Springer Science & Business Media
ISBN: 3642239072
Category : Science
Languages : en
Pages : 245
Book Description
The thermodynamics of strongly interacting matter has become a profound and challenging area of modern physics, both in theory and in experiment. Statistical quantum chromodynamics, through analytical as well as numerical studies, provides the main theoretical tool, while in experiment, high-energy nuclear collisions are the key for extensive laboratory investigations. The field therefore straddles statistical, particle and nuclear physics, both conceptually and in the methods of investigation used. This course-tested primer addresses above all the many young scientists starting their scientific research in this field, providing them with a general, self-contained introduction that emphasizes in particular the basic concepts and ideas, with the aim of explaining why we do what we do. To achieve this goal, the present text concentrates mainly on equilibrium thermodynamics: first, the fundamental ideas of strong interaction thermodynamics are introduced and then the main concepts and methods used in the study of the physics of complex systems are summarized. Subsequently, simplified phenomenological pictures, leading to critical behavior in hadronic matter and to hadron-quark phase transitions are introduced, followed by elements of finite-temperature lattice QCD leading to the important results obtained in computer simulation studies of the lattice approach. Next, the relation of the resulting critical behavior to symmetry breaking/restoration in QCD is clarified before the text turns to the study of the QCD phase diagram. The presentation of bulk equilibrium thermodynamics is completed by studying the properties of the quark-gluon plasma as new state of strongly interacting matter. The final chapters of the book are devoted to more specific topics which arise when nuclear collisions are considered as a tool for the experimental study of QCD thermodynamics.
Strongly Interacting Matter in Magnetic Fields
Author: Dmitri Kharzeev
Publisher: Springer
ISBN: 3642373054
Category : Science
Languages : en
Pages : 630
Book Description
The physics of strongly interacting matter in an external magnetic field is presently emerging as a topic of great cross-disciplinary interest for particle, nuclear, astro- and condensed matter physicists. It is known that strong magnetic fields are created in heavy ion collisions, an insight that has made it possible to study a variety of surprising and intriguing phenomena that emerge from the interplay of quantum anomalies, the topology of non-Abelian gauge fields, and the magnetic field. In particular, the non-trivial topological configurations of the gluon field induce a non-dissipative electric current in the presence of a magnetic field. These phenomena have led to an extended formulation of relativistic hydrodynamics, called chiral magnetohydrodynamics. Hitherto unexpected applications in condensed matter physics include graphene and topological insulators. Other fields of application include astrophysics, where strong magnetic fields exist in magnetars and pulsars. Last but not least, an important new theoretical tool that will be revisited and which made much of the progress surveyed in this book possible is the holographic principle - the correspondence between quantum field theory and gravity in extra dimensions. Edited and authored by the pioneers and leading experts in this newly emerging field, this book offers a valuable resource for a broad community of physicists and graduate students.
Publisher: Springer
ISBN: 3642373054
Category : Science
Languages : en
Pages : 630
Book Description
The physics of strongly interacting matter in an external magnetic field is presently emerging as a topic of great cross-disciplinary interest for particle, nuclear, astro- and condensed matter physicists. It is known that strong magnetic fields are created in heavy ion collisions, an insight that has made it possible to study a variety of surprising and intriguing phenomena that emerge from the interplay of quantum anomalies, the topology of non-Abelian gauge fields, and the magnetic field. In particular, the non-trivial topological configurations of the gluon field induce a non-dissipative electric current in the presence of a magnetic field. These phenomena have led to an extended formulation of relativistic hydrodynamics, called chiral magnetohydrodynamics. Hitherto unexpected applications in condensed matter physics include graphene and topological insulators. Other fields of application include astrophysics, where strong magnetic fields exist in magnetars and pulsars. Last but not least, an important new theoretical tool that will be revisited and which made much of the progress surveyed in this book possible is the holographic principle - the correspondence between quantum field theory and gravity in extra dimensions. Edited and authored by the pioneers and leading experts in this newly emerging field, this book offers a valuable resource for a broad community of physicists and graduate students.
Strongly Interacting Matter under Rotation
Author: Francesco Becattini
Publisher: Springer Nature
ISBN: 3030714276
Category : Science
Languages : en
Pages : 400
Book Description
This book addresses the needs of growing community of graduate students and researchers new to the area, for a survey that covers a wide range of pertinent topics, summarizes the current status of the field, and provides the necessary pedagogical materials for newcomers. The investigation of strongly interacting matter under the influence of macroscopic rotational motion is a new, emerging area of research that encompasses a broad range of conventional physics disciplines such as nuclear physics, astrophysics, and condensed matter physics, where the non-trivial interplay between global rotation and spin is generating many novel phenomena. Edited and authored by leading researchers in the field, this book covers the following topics: thermodynamics and equilibrium distribution of rotating matter; quantum field theory and rotation; phase structure of QCD matter under rotation; kinetic theory of relativistic rotating matter; hydrodynamics with spin; magnetic effects in fluid systems with high vorticity and charge; polarization measurements in heavy ion collisions; hydrodynamic modeling of the QCD plasma and polarization calculation in relativistic heavy ion collisions; chiral vortical effect; rotational effects and related topics in neutron stars and condensed matter systems.
Publisher: Springer Nature
ISBN: 3030714276
Category : Science
Languages : en
Pages : 400
Book Description
This book addresses the needs of growing community of graduate students and researchers new to the area, for a survey that covers a wide range of pertinent topics, summarizes the current status of the field, and provides the necessary pedagogical materials for newcomers. The investigation of strongly interacting matter under the influence of macroscopic rotational motion is a new, emerging area of research that encompasses a broad range of conventional physics disciplines such as nuclear physics, astrophysics, and condensed matter physics, where the non-trivial interplay between global rotation and spin is generating many novel phenomena. Edited and authored by leading researchers in the field, this book covers the following topics: thermodynamics and equilibrium distribution of rotating matter; quantum field theory and rotation; phase structure of QCD matter under rotation; kinetic theory of relativistic rotating matter; hydrodynamics with spin; magnetic effects in fluid systems with high vorticity and charge; polarization measurements in heavy ion collisions; hydrodynamic modeling of the QCD plasma and polarization calculation in relativistic heavy ion collisions; chiral vortical effect; rotational effects and related topics in neutron stars and condensed matter systems.
Nuclear Matter in Different Phases and Transitions
Author: Jean-Paul Blaizot
Publisher: Springer Science & Business Media
ISBN: 9401145563
Category : Science
Languages : en
Pages : 523
Book Description
This understandable and inspiring book brings together both theorists and experimentalists working on the properties of nuclear and hadronic matter produced in heavy-ion collisions in various energy ranges. The main focus is on experimental signals revealing the possible phase changes of the matter.
Publisher: Springer Science & Business Media
ISBN: 9401145563
Category : Science
Languages : en
Pages : 523
Book Description
This understandable and inspiring book brings together both theorists and experimentalists working on the properties of nuclear and hadronic matter produced in heavy-ion collisions in various energy ranges. The main focus is on experimental signals revealing the possible phase changes of the matter.
Hot Hadronic Matter
Author: Jean Letessier
Publisher: Springer Science & Business Media
ISBN: 1461519454
Category : Science
Languages : en
Pages : 569
Book Description
The past decade has seen the development of the operational understanding of fun damental interactions within the standard model. This has detoured our attention from the great enigmas posed by the dynamics and collective behavior of strongly interacting particles. Discovered more than 30 years ago, the thermal nature of the hadronic particle spectra has stimulated considerable theoretical effort, which so far has failed to 'confirm' on the basis of microscopic interactions the origins of this phenomenon. However, a highly successful Statistical Bootstrap Model was developed by Rolf Hagedorn at CERN about 30 years ago, which has led us to consider the 'boiling hadronic matter' as a transient state in the trans formation of hadronic particles into their melted form which we call Quark-GIuon-Plasma (QGP). Today, we return to seek detailed understanding of the thermalization processes of hadronic matter, equipped on the theoretical side with the knowledge of the fundamental strong interaction theory, the quantum chromo-dynamics (QCD), and recognizing the im portant role of the complex QCD-vacuum structure. On the other side, we have developed new experimental tools in the form of nuclear relativistic beams, which allow to create rather extended regions in space-time of Hot Hadronic Matter. The confluence of these new and recent developments in theory and experiment led us to gather together from June 27 to July 1, 1994, at the Grand Hotel in Divonne-Ies-Bains, France, to discuss and expose the open questions and issues in our field.
Publisher: Springer Science & Business Media
ISBN: 1461519454
Category : Science
Languages : en
Pages : 569
Book Description
The past decade has seen the development of the operational understanding of fun damental interactions within the standard model. This has detoured our attention from the great enigmas posed by the dynamics and collective behavior of strongly interacting particles. Discovered more than 30 years ago, the thermal nature of the hadronic particle spectra has stimulated considerable theoretical effort, which so far has failed to 'confirm' on the basis of microscopic interactions the origins of this phenomenon. However, a highly successful Statistical Bootstrap Model was developed by Rolf Hagedorn at CERN about 30 years ago, which has led us to consider the 'boiling hadronic matter' as a transient state in the trans formation of hadronic particles into their melted form which we call Quark-GIuon-Plasma (QGP). Today, we return to seek detailed understanding of the thermalization processes of hadronic matter, equipped on the theoretical side with the knowledge of the fundamental strong interaction theory, the quantum chromo-dynamics (QCD), and recognizing the im portant role of the complex QCD-vacuum structure. On the other side, we have developed new experimental tools in the form of nuclear relativistic beams, which allow to create rather extended regions in space-time of Hot Hadronic Matter. The confluence of these new and recent developments in theory and experiment led us to gather together from June 27 to July 1, 1994, at the Grand Hotel in Divonne-Ies-Bains, France, to discuss and expose the open questions and issues in our field.
The CBM Physics Book
Author: Bengt Friman
Publisher: Springer
ISBN: 3642132936
Category : Science
Languages : en
Pages : 973
Book Description
This exhaustive survey is the result of a four year effort by many leading researchers in the field to produce both a readable introduction and a yardstick for the many upcoming experiments using heavy ion collisions to examine the properties of nuclear matter. The books falls naturally into five large parts, first examining the bulk properties of strongly interacting matter, including its equation of state and phase structure. Part II discusses elementary hadronic excitations of nuclear matter, Part III addresses the concepts and models regarding the space-time dynamics of nuclear collision experiments, Part IV collects the observables from past and current high-energy heavy-ion facilities in the context of the theoretical predictions specific to compressed baryonic matter. Part V finally gives a brief description of the experimental concepts. The book explicitly addresses everyone working or planning to enter the field of high-energy nuclear physics.
Publisher: Springer
ISBN: 3642132936
Category : Science
Languages : en
Pages : 973
Book Description
This exhaustive survey is the result of a four year effort by many leading researchers in the field to produce both a readable introduction and a yardstick for the many upcoming experiments using heavy ion collisions to examine the properties of nuclear matter. The books falls naturally into five large parts, first examining the bulk properties of strongly interacting matter, including its equation of state and phase structure. Part II discusses elementary hadronic excitations of nuclear matter, Part III addresses the concepts and models regarding the space-time dynamics of nuclear collision experiments, Part IV collects the observables from past and current high-energy heavy-ion facilities in the context of the theoretical predictions specific to compressed baryonic matter. Part V finally gives a brief description of the experimental concepts. The book explicitly addresses everyone working or planning to enter the field of high-energy nuclear physics.
Strong and Electroweak Matter 2000
Author: C. P. Korthals Altes
Publisher: World Scientific
ISBN: 9812799915
Category : Science
Languages : en
Pages : 383
Book Description
This book contains articles by experts on the plasma phase of quantum chromodynamics, and the plasma phase of electroweak interactions. The former plasma phase is being tested at RHIC (Brookhaven), and has been tested at CERN. Both plasmas have played roles in the development of the Universe since the Big Bang. A third topic is that of the high density colour superconductive state of matter, which may be present in the core of neutron stars. Contents: Color Superconductivity in Compact Stars (M Alford et al.); Aspects of Parity, CP and Time Reversal Violation in Hot QCD (D Kharzeev et al.); Electroweak Phase Transition Beyond the Standard Model (M Laine); Aspects of Semi-Classical Transport Theory for QCD (D Litim); Debye Screening in the QCD Plasma (O Philipsen); Isospin Matter (D Son & M Stephanov); The Electrical Conductivity in High Temperature QED (L Bettencourt & E Mottola); Phase Transition in QCD (H Satz); Time Dependent Effective Actions at Finite Temperature (T Evans); Nonequilibrium Dynamics in Gauge Theories (J Baacke & K Heitmann); Bubble Wall Velocity in the MSSM (P John & M Schmidt); Sphalerons with Two Higgs Doublets (M Hindmarsh & J Grant); and other papers. Readership: PhD students, researchers and academics in particle physics.
Publisher: World Scientific
ISBN: 9812799915
Category : Science
Languages : en
Pages : 383
Book Description
This book contains articles by experts on the plasma phase of quantum chromodynamics, and the plasma phase of electroweak interactions. The former plasma phase is being tested at RHIC (Brookhaven), and has been tested at CERN. Both plasmas have played roles in the development of the Universe since the Big Bang. A third topic is that of the high density colour superconductive state of matter, which may be present in the core of neutron stars. Contents: Color Superconductivity in Compact Stars (M Alford et al.); Aspects of Parity, CP and Time Reversal Violation in Hot QCD (D Kharzeev et al.); Electroweak Phase Transition Beyond the Standard Model (M Laine); Aspects of Semi-Classical Transport Theory for QCD (D Litim); Debye Screening in the QCD Plasma (O Philipsen); Isospin Matter (D Son & M Stephanov); The Electrical Conductivity in High Temperature QED (L Bettencourt & E Mottola); Phase Transition in QCD (H Satz); Time Dependent Effective Actions at Finite Temperature (T Evans); Nonequilibrium Dynamics in Gauge Theories (J Baacke & K Heitmann); Bubble Wall Velocity in the MSSM (P John & M Schmidt); Sphalerons with Two Higgs Doublets (M Hindmarsh & J Grant); and other papers. Readership: PhD students, researchers and academics in particle physics.
60 Years Of Cern Experiments And Discoveries
Author: Herwig Schopper
Publisher: World Scientific
ISBN: 9814644161
Category : Science
Languages : en
Pages : 452
Book Description
The book is a compilation of the most important experimental results achieved during the past 60 years at CERN - from the mid-1950s to the latest discovery of the Higgs particle. Covering the results from the early accelerators at CERN to those most recent at the LHC, the contents provide an excellent review of the achievements of this outstanding laboratory. Not only presented is the impressive scientific progress achieved during the past six decades, but also demonstrated is the special way in which successful international collaboration exists at CERN.
Publisher: World Scientific
ISBN: 9814644161
Category : Science
Languages : en
Pages : 452
Book Description
The book is a compilation of the most important experimental results achieved during the past 60 years at CERN - from the mid-1950s to the latest discovery of the Higgs particle. Covering the results from the early accelerators at CERN to those most recent at the LHC, the contents provide an excellent review of the achievements of this outstanding laboratory. Not only presented is the impressive scientific progress achieved during the past six decades, but also demonstrated is the special way in which successful international collaboration exists at CERN.