Phase Field Modeling for Fracture with Applications to Homogeneous and Heterogeneous Materials

Phase Field Modeling for Fracture with Applications to Homogeneous and Heterogeneous Materials PDF Author: Mohammed Abdulrazzak Msekh
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The thesis presents an implementation including different applications of a variational-based approach for gradient type standard dissipative solids. Phase field model for brittle fracture is an application of the variational-based framework for gradient type solids. This model allows the prediction of different crack topologies and states. Of significant concern is the application of theoretical and numerical formulation of the phase field modeling into the commercial finite element software Abaqus in 2D and 3D. The fully coupled incremental variational formulation of phase field method is implemented by using the UEL and UMAT subroutines of Abaqus. The phase field method considerably reduces the implementation complexity of fracture problems as it removes the need for numerical tracking of discontinuities in the displacement field that are characteristic of discrete crack methods. This is accomplished by replacing the sharp discontinuities with a scalar damage phase field representing the diffuse crack topology wherein the amount of diffusion is controlled by a regularization parameter. The nonlinear coupled system consisting of the linear momentum equation and a diffusion type equation governing the phase field evolution is solved simultaneously via a Newton- Raphson approach. Post-processing of simulation results to be used as visualization module is performed via an additional UMAT subroutine implemented in the standard Abaqus viewer. In the same context, we propose a simple yet effective algorithm to initiate and propagate cracks in 2D geometries which is independent of both particular constitutive laws and specific element technology and dimension. It consists of a localization limiter in the form of the screened Poisson equation with, optionally, local mesh refinement. A staggered scheme for standard equilibrium and screened Cauchy equations is used. The remeshing part of the algorithm consists of a sequence of mesh subdivision and element erosion steps. Element subdivision is based on edge split operations using a given constitutive quantity (either damage or void fraction). Mesh smoothing makes use of edge contraction as function of a given constitutive quantity such as the principal stress or void fraction. To assess the robustness and accuracy of this algorithm, we use both quasi-brittle benchmarks and ductile tests. Furthermore, we introduce a computational approach regarding mechanical loading in microscale on an inelastically deforming composite material. The nanocomposites material of fully exfoliated clay/epoxy is shaped to predict macroscopic elastic and fracture related material parameters based on their fine-scale features. Two different configurations of polymer nanocomposites material (PNCs) have been studied. These configurations are fully bonded PNCs and PNCs with an interphase zone formation between the matrix and the clay reinforcement. The representative volume element of PNCs specimens with different clay weight contents, different aspect ratios, and different interphase zone thicknesses are generated by adopting Python scripting. Different constitutive models are employed for the matrix, the clay platelets, and the interphase zones. The brittle fracture behavior of the epoxy matrix and the interphase zones material are modeled using the phase field approach, whereas the stiff silicate clay platelets of the composite are designated as a linear elastic material. The comprehensive study investigates the elastic and fracture behavior of PNCs composites, in addition to predict Young's modulus, tensile strength, fracture toughness, surface energy dissipation, and cracks surface area in the composite for different material parameters, geometry, and interphase zones properties and thicknesses.

Phase Field Modeling for Fracture with Applications to Homogeneous and Heterogeneous Materials

Phase Field Modeling for Fracture with Applications to Homogeneous and Heterogeneous Materials PDF Author: Mohammed Abdulrazzak Msekh
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The thesis presents an implementation including different applications of a variational-based approach for gradient type standard dissipative solids. Phase field model for brittle fracture is an application of the variational-based framework for gradient type solids. This model allows the prediction of different crack topologies and states. Of significant concern is the application of theoretical and numerical formulation of the phase field modeling into the commercial finite element software Abaqus in 2D and 3D. The fully coupled incremental variational formulation of phase field method is implemented by using the UEL and UMAT subroutines of Abaqus. The phase field method considerably reduces the implementation complexity of fracture problems as it removes the need for numerical tracking of discontinuities in the displacement field that are characteristic of discrete crack methods. This is accomplished by replacing the sharp discontinuities with a scalar damage phase field representing the diffuse crack topology wherein the amount of diffusion is controlled by a regularization parameter. The nonlinear coupled system consisting of the linear momentum equation and a diffusion type equation governing the phase field evolution is solved simultaneously via a Newton- Raphson approach. Post-processing of simulation results to be used as visualization module is performed via an additional UMAT subroutine implemented in the standard Abaqus viewer. In the same context, we propose a simple yet effective algorithm to initiate and propagate cracks in 2D geometries which is independent of both particular constitutive laws and specific element technology and dimension. It consists of a localization limiter in the form of the screened Poisson equation with, optionally, local mesh refinement. A staggered scheme for standard equilibrium and screened Cauchy equations is used. The remeshing part of the algorithm consists of a sequence of mesh subdivision and element erosion steps. Element subdivision is based on edge split operations using a given constitutive quantity (either damage or void fraction). Mesh smoothing makes use of edge contraction as function of a given constitutive quantity such as the principal stress or void fraction. To assess the robustness and accuracy of this algorithm, we use both quasi-brittle benchmarks and ductile tests. Furthermore, we introduce a computational approach regarding mechanical loading in microscale on an inelastically deforming composite material. The nanocomposites material of fully exfoliated clay/epoxy is shaped to predict macroscopic elastic and fracture related material parameters based on their fine-scale features. Two different configurations of polymer nanocomposites material (PNCs) have been studied. These configurations are fully bonded PNCs and PNCs with an interphase zone formation between the matrix and the clay reinforcement. The representative volume element of PNCs specimens with different clay weight contents, different aspect ratios, and different interphase zone thicknesses are generated by adopting Python scripting. Different constitutive models are employed for the matrix, the clay platelets, and the interphase zones. The brittle fracture behavior of the epoxy matrix and the interphase zones material are modeled using the phase field approach, whereas the stiff silicate clay platelets of the composite are designated as a linear elastic material. The comprehensive study investigates the elastic and fracture behavior of PNCs composites, in addition to predict Young's modulus, tensile strength, fracture toughness, surface energy dissipation, and cracks surface area in the composite for different material parameters, geometry, and interphase zones properties and thicknesses.

The Variational Approach to Fracture

The Variational Approach to Fracture PDF Author: Blaise Bourdin
Publisher: Springer Science & Business Media
ISBN: 1402063954
Category : Technology & Engineering
Languages : en
Pages : 173

Get Book Here

Book Description
Presenting original results from both theoretical and numerical viewpoints, this text offers a detailed discussion of the variational approach to brittle fracture. This approach views crack growth as the result of a competition between bulk and surface energy, treating crack evolution from its initiation all the way to the failure of a sample. The authors model crack initiation, crack path, and crack extension for arbitrary geometries and loads.

Phase-field Modeling of Fracture in Heterogeneous Materials

Phase-field Modeling of Fracture in Heterogeneous Materials PDF Author: Arne Claus Hansen-Dörr
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Applications of Phase-field Modeling in Hydraulic Fracture

Applications of Phase-field Modeling in Hydraulic Fracture PDF Author: Talal Eid Alotaibi
Publisher:
ISBN:
Category :
Languages : en
Pages : 354

Get Book Here

Book Description
Understanding the mechanisms behind the nucleation and propagation of cracks is of considerable interest in engineering application and design decisions. In many applications in the oil industry, complicated fracture geometries and propagation behaviors are encountered. As a result, the development of modeling approaches that can capture the physics of non-planar crack evolution while being computationally tractable is a critical challenge. The phase-field approach to fracture has been shown to be a powerful tool for simulating very complex fracture topologies, including the turning, splitting, and merging of cracks. In contrast to fracture models that explicitly track the crack surfaces, crack propagation and the evolution thereof arise out of the solution to a partial differential equation governing the evolution of a phase-field damage parameter. As such, the crack growth emerges naturally from solving the set of coupled differential equations linking the phase-field to other field quantities that can drive the fracture process. In the present model, the physics of flow through porous media and cracks is coupled with the mechanics of fracture. Darcy-type flow is modeled in the intact porous medium, which transitions to a Stokes-type flow regime within open cracks. This phase-field model is implemented to gain insights into the propagation behavior of fluid-injected cracks. One outstanding issue with phase-field fracture models is the decomposition of the strain energy required to ensure that compressive stress states do not cause crack propagation and damage evolution. In the present study, the proper representation of the strain energy function to reflect this fracture phenomenon is examined. The strain energy is constructed in terms of principle strains in such a way that it has two parts; the tensile and the compressive. A degradation function only applies to the tensile part enforcing that the crack is driven only by that part of the strain energy. We investigated the split operator proposed by Miehe et al. [1], and then proposed a split approach based on masonry-like material behavior [2, 3]. We have found that when using Miehe's form for the strain energy function, cracks can propagate under compressive stresses. In contrast, the approach based on a masonry-like materials constitutive model we proposed ensures that cracks do not grow under compressive stresses. To demonstrate the capabilities of phase-field modeling for fluid-driven fractures, four general types of problems are simulated: 1) interactions of fluid-driven, natural, and proppant-filled cracks, 2) crack growth through different material layers, 3) fluid-driven crack growth under the influence of in-situ far-field stresses, and 4) crack interactions with inclusions. The simulations illustrate the capabilities of the phase-field model for capturing interesting and complex crack growth phenomena. To understand how fluid-driven cracks interact with inclusions, AlTammar et al. [4] performed experiments. Three tests with tough inclusions were performed to understand the effects of orientation angle, thickness, and material properties. Additionally, one test with a weak inclusion was performed to compare the results with those of the tough inclusion cases. The experiments show a clear tendency for the fluid-driven hydraulic fracture to cross thick natural fractures filled with materials weaker and softer than the matrix and to be diverted by thick natural fractures with tougher and stiffer filling materials. To replicate these experiments numerically and to gain a mechanistic understanding, in the present study, we ran simulations using phase-field modeling. Results from both the experiments and the simulations provide clear evidence that inclusion width, angle, material properties, and distance from the injection point affect the outcome of the crack evolution. Phase-field modeling was able to capture the trends of crack deflection/crossing in all the test cases. Finally, we extended the phase-field model has been extended to three dimensions and tested it on bench-mark problems. The first bench-mark problem is a compact test for a CT specimen. In this problem, the mechanical equations are only considered. The simulation shows that the CT specimen is split into two symmetric parts. The second bench-mark problem is a fluid-driven circular crack. The simulation for this problem shows that the crack grows in a radial direction

Approximation of Free-Discontinuity Problems

Approximation of Free-Discontinuity Problems PDF Author: Andrea Braides
Publisher: Springer Science & Business Media
ISBN: 9783540647713
Category : Mathematics
Languages : en
Pages : 176

Get Book Here

Book Description
Functionals involving both volume and surface energies have a number of applications ranging from Computer Vision to Fracture Mechanics. In order to tackle numerical and dynamical problems linked to such functionals many approximations by functionals defined on smooth functions have been proposed (using high-order singular perturbations, finite-difference or non-local energies, etc.) The purpose of this book is to present a global approach to these approximations using the theory of gamma-convergence and of special functions of bounded variation. The book is directed to PhD students and researchers in calculus of variations, interested in approximation problems with possible applications.

Dynamic Fracture

Dynamic Fracture PDF Author: K. Ravi-Chandar
Publisher: Elsevier
ISBN: 0080472559
Category : Science
Languages : en
Pages : 265

Get Book Here

Book Description
Dynamic fracture in solids has attracted much attention for over a century from engineers as well as physicists due both to its technological interest and to inherent scientific curiosity. Rapidly applied loads are encountered in a number of technical applications. In some cases such loads might be applied deliberately, as for example in problems of blasting, mining, and comminution or fragmentation; in other cases, such dynamic loads might arise from accidental conditions. Regardless of the origin of the rapid loading, it is necessary to understand the mechanisms and mechanics of fracture under dynamic loading conditions in order to design suitable procedures for assessing the susceptibility to fracture. Quite apart from its repercussions in the area of structural integrity, fundamental scientific curiosity has continued to play a large role in engendering interest in dynamic fracture problems In-depth coverage of the mechanics, experimental methods, practical applications Summary of material response of different materials Discussion of unresolved issues in dynamic fracture

Micromechanics of Fracture and Damage

Micromechanics of Fracture and Damage PDF Author: Luc Dormieux
Publisher: John Wiley & Sons
ISBN: 1119292182
Category : Technology & Engineering
Languages : en
Pages : 249

Get Book Here

Book Description
This book deals with the mechanics and physics of fractures at various scales. Based on advanced continuum mechanics of heterogeneous media, it develops a rigorous mathematical framework for single macrocrack problems as well as for the effective properties of microcracked materials. In both cases, two geometrical models of cracks are examined and discussed: the idealized representation of the crack as two parallel faces (the Griffith crack model), and the representation of a crack as a flat elliptic or ellipsoidal cavity (the Eshelby inhomogeneity problem). The book is composed of two parts: The first part deals with solutions to 2D and 3D problems involving a single crack in linear elasticity. Elementary solutions of cracks problems in the different modes are fully worked. Various mathematical techniques are presented, including Neuber-Papkovitch displacement potentials, complex analysis with conformal mapping and Eshelby-based solutions. The second part is devoted to continuum micromechanics approaches of microcracked materials in relation to methods and results presented in the first part. Various estimates and bounds of the effective elastic properties are presented. They are considered for the formulation and application of continuum micromechanics-based damage models.

Phase-Field Methods in Materials Science and Engineering

Phase-Field Methods in Materials Science and Engineering PDF Author: Nikolas Provatas
Publisher: John Wiley & Sons
ISBN: 3527632379
Category : Computers
Languages : en
Pages : 323

Get Book Here

Book Description
This comprehensive and self-contained, one-stop source discusses phase-field methodology in a fundamental way, explaining advanced numerical techniques for solving phase-field and related continuum-field models. It also presents numerical techniques used to simulate various phenomena in a detailed, step-by-step way, such that readers can carry out their own code developments. Features many examples of how the methods explained can be used in materials science and engineering applications.

Programming Phase-Field Modeling

Programming Phase-Field Modeling PDF Author: S. Bulent Biner
Publisher: Springer
ISBN: 3319411969
Category : Technology & Engineering
Languages : en
Pages : 411

Get Book Here

Book Description
This textbook provides a fast-track pathway to numerical implementation of phase-field modeling—a relatively new paradigm that has become the method of choice for modeling and simulation of microstructure evolution in materials. It serves as a cookbook for the phase-field method by presenting a collection of codes that act as foundations and templates for developing other models with more complexity. Programming Phase-Field Modeling uses the Matlab/Octave programming package, simpler and more compact than other high-level programming languages, providing ease of use to the widest audience. Particular attention is devoted to the computational efficiency and clarity during development of the codes, which allows the reader to easily make the connection between the mathematical formulism and the numerical implementation of phase-field models. The background materials provided in each case study also provide a forum for undergraduate level modeling-simulations courses as part of their curriculum.

Recent Advances in Layered Materials and Structures

Recent Advances in Layered Materials and Structures PDF Author: Sarmila Sahoo
Publisher: Springer Nature
ISBN: 9813345500
Category : Technology & Engineering
Languages : en
Pages : 431

Get Book Here

Book Description
This book provides topical information on innovative, structural and functional materials and composites with applications in various engineering fields covering the structure, properties, manufacturing process, and applications of these materials. It covers various topics in layered structures and layered materials. It discusses the latest developments in the materials engineering field. This book will be useful for academicians, researchers, and practitioners working in the fields of materials engineering, layered structures, and composite materials.