Author: Simeon Reich
Publisher: American Mathematical Soc.
ISBN: 0821848348
Category : Mathematics
Languages : en
Pages : 290
Book Description
This volume is the first of two volumes representing leading themes of current research in nonlinear analysis and optimization. The articles are written by prominent researchers in these two areas and bring the readers, advanced graduate students and researchers alike, to the frontline of the vigorous research in these important fields of mathematics. This volume contains articles on nonlinear analysis. Topics covered include the convex feasibility problem, fixed point theory, mathematical biology, Mosco stability, nonexpansive mapping theory, nonlinear partial differential equations, optimal control, the proximal point algorithm and semigroup theory. The companion volume (Contemporary Mathematics, Volume 514) is devoted to optimization. This book is co-published with Bar-Ilan University (Ramat-Gan, Israel). Table of Contents: A. S. Ackleh, K. Deng, and Q. Huang -- Existence-uniqueness results and difference approximations for an amphibian juvenile-adult model; S. Aizicovici, N. S. Papageorgiou, and V. Staicu -- Three nontrivial solutions for $p$-Laplacian Neumann problems with a concave nonlinearity near the origin; V. Barbu -- Optimal stabilizable feedback controller for Navier-Stokes equations; H. H. Bauschke and X. Wang -- Firmly nonexpansive and Kirszbraun-Valentine extensions: A constructive approach via monotone operator theory; R. E. Bruck -- On the random product of orthogonal projections in Hilbert space II; D. Butnariu, E. Resmerita, and S. Sabach -- A Mosco stability theorem for the generalized proximal mapping; A. Cegielski -- Generalized relaxations of nonexpansive operators and convex feasibility problems; Y. Censor and A. Segal -- Sparse string-averaging and split common fixed points; T. Dominguez Benavides and S. Phothi -- Genericity of the fixed point property for reflexive spaces under renormings; K. Goebel and B. Sims -- Mean Lipschitzian mappings; T. Ibaraki and W. Takahashi -- Generalized nonexpansive mappings and a proximal-type algorithm in Banach spaces; W. Kaczor, T. Kuczumow, and N. Michalska -- The common fixed point set of commuting nonexpansive mapping in Cartesian products of weakly compact convex sets; L. Leu'tean -- Nonexpansive iterations in uniformly convex $W$-hyperbolic spaces; G. Lopez, V. Martin-Marquez, and H.-K. Xu -- Halpern's iteration for nonexpansive mappings; J. W. Neuberger -- Lie generators for local semigroups; H.-K. Xu -- An alternative regularization method for nonexpansive mappings with applications. (CONM/513)
Nonlinear Analysis and Optimization I
Optimization on Solution Sets of Common Fixed Point Problems
Author: Alexander J. Zaslavski
Publisher: Springer Nature
ISBN: 3030788490
Category : Mathematics
Languages : en
Pages : 434
Book Description
This book is devoted to a detailed study of the subgradient projection method and its variants for convex optimization problems over the solution sets of common fixed point problems and convex feasibility problems. These optimization problems are investigated to determine good solutions obtained by different versions of the subgradient projection algorithm in the presence of sufficiently small computational errors. The use of selected algorithms is highlighted including the Cimmino type subgradient, the iterative subgradient, and the dynamic string-averaging subgradient. All results presented are new. Optimization problems where the underlying constraints are the solution sets of other problems, frequently occur in applied mathematics. The reader should not miss the section in Chapter 1 which considers some examples arising in the real world applications. The problems discussed have an important impact in optimization theory as well. The book will be useful for researches interested in the optimization theory and its applications.
Publisher: Springer Nature
ISBN: 3030788490
Category : Mathematics
Languages : en
Pages : 434
Book Description
This book is devoted to a detailed study of the subgradient projection method and its variants for convex optimization problems over the solution sets of common fixed point problems and convex feasibility problems. These optimization problems are investigated to determine good solutions obtained by different versions of the subgradient projection algorithm in the presence of sufficiently small computational errors. The use of selected algorithms is highlighted including the Cimmino type subgradient, the iterative subgradient, and the dynamic string-averaging subgradient. All results presented are new. Optimization problems where the underlying constraints are the solution sets of other problems, frequently occur in applied mathematics. The reader should not miss the section in Chapter 1 which considers some examples arising in the real world applications. The problems discussed have an important impact in optimization theory as well. The book will be useful for researches interested in the optimization theory and its applications.
Discrete Optimization and Operations Research
Author: Yury Kochetov
Publisher: Springer
ISBN: 3319449141
Category : Computers
Languages : en
Pages : 597
Book Description
This book constitutes the proceedings of the 9th International Conference on Discrete Optimization and Operations Research, DOOR 2016, held in Vladivostok, Russia, in September 2016. The 39 full papers presented in this volume were carefully reviewed and selected from 181 submissions. They were organized in topical sections named: discrete optimization; scheduling problems; facility location; mathematical programming; mathematical economics and games; applications of operational research; and short communications.
Publisher: Springer
ISBN: 3319449141
Category : Computers
Languages : en
Pages : 597
Book Description
This book constitutes the proceedings of the 9th International Conference on Discrete Optimization and Operations Research, DOOR 2016, held in Vladivostok, Russia, in September 2016. The 39 full papers presented in this volume were carefully reviewed and selected from 181 submissions. They were organized in topical sections named: discrete optimization; scheduling problems; facility location; mathematical programming; mathematical economics and games; applications of operational research; and short communications.
Algorithms for Solving Common Fixed Point Problems
Author: Alexander J. Zaslavski
Publisher: Springer
ISBN: 3319774379
Category : Mathematics
Languages : en
Pages : 320
Book Description
This book details approximate solutions to common fixed point problems and convex feasibility problems in the presence of perturbations. Convex feasibility problems search for a common point of a finite collection of subsets in a Hilbert space; common fixed point problems pursue a common fixed point of a finite collection of self-mappings in a Hilbert space. A variety of algorithms are considered in this book for solving both types of problems, the study of which has fueled a rapidly growing area of research. This monograph is timely and highlights the numerous applications to engineering, computed tomography, and radiation therapy planning. Totaling eight chapters, this book begins with an introduction to foundational material and moves on to examine iterative methods in metric spaces. The dynamic string-averaging methods for common fixed point problems in normed space are analyzed in Chapter 3. Dynamic string methods, for common fixed point problems in a metric space are introduced and discussed in Chapter 4. Chapter 5 is devoted to the convergence of an abstract version of the algorithm which has been called component-averaged row projections (CARP). Chapter 6 studies a proximal algorithm for finding a common zero of a family of maximal monotone operators. Chapter 7 extends the results of Chapter 6 for a dynamic string-averaging version of the proximal algorithm. In Chapters 8 subgradient projections algorithms for convex feasibility problems are examined for infinite dimensional Hilbert spaces.
Publisher: Springer
ISBN: 3319774379
Category : Mathematics
Languages : en
Pages : 320
Book Description
This book details approximate solutions to common fixed point problems and convex feasibility problems in the presence of perturbations. Convex feasibility problems search for a common point of a finite collection of subsets in a Hilbert space; common fixed point problems pursue a common fixed point of a finite collection of self-mappings in a Hilbert space. A variety of algorithms are considered in this book for solving both types of problems, the study of which has fueled a rapidly growing area of research. This monograph is timely and highlights the numerous applications to engineering, computed tomography, and radiation therapy planning. Totaling eight chapters, this book begins with an introduction to foundational material and moves on to examine iterative methods in metric spaces. The dynamic string-averaging methods for common fixed point problems in normed space are analyzed in Chapter 3. Dynamic string methods, for common fixed point problems in a metric space are introduced and discussed in Chapter 4. Chapter 5 is devoted to the convergence of an abstract version of the algorithm which has been called component-averaged row projections (CARP). Chapter 6 studies a proximal algorithm for finding a common zero of a family of maximal monotone operators. Chapter 7 extends the results of Chapter 6 for a dynamic string-averaging version of the proximal algorithm. In Chapters 8 subgradient projections algorithms for convex feasibility problems are examined for infinite dimensional Hilbert spaces.
Solutions of Fixed Point Problems with Computational Errors
Author: Alexander J. Zaslavski
Publisher: Springer Nature
ISBN: 3031508793
Category :
Languages : en
Pages : 392
Book Description
Publisher: Springer Nature
ISBN: 3031508793
Category :
Languages : en
Pages : 392
Book Description
Iterative Methods for Fixed Point Problems in Hilbert Spaces
Author: Andrzej Cegielski
Publisher: Springer
ISBN: 3642309011
Category : Mathematics
Languages : en
Pages : 312
Book Description
Iterative methods for finding fixed points of non-expansive operators in Hilbert spaces have been described in many publications. In this monograph we try to present the methods in a consolidated way. We introduce several classes of operators, examine their properties, define iterative methods generated by operators from these classes and present general convergence theorems. On this basis we discuss the conditions under which particular methods converge. A large part of the results presented in this monograph can be found in various forms in the literature (although several results presented here are new). We have tried, however, to show that the convergence of a large class of iteration methods follows from general properties of some classes of operators and from some general convergence theorems.
Publisher: Springer
ISBN: 3642309011
Category : Mathematics
Languages : en
Pages : 312
Book Description
Iterative methods for finding fixed points of non-expansive operators in Hilbert spaces have been described in many publications. In this monograph we try to present the methods in a consolidated way. We introduce several classes of operators, examine their properties, define iterative methods generated by operators from these classes and present general convergence theorems. On this basis we discuss the conditions under which particular methods converge. A large part of the results presented in this monograph can be found in various forms in the literature (although several results presented here are new). We have tried, however, to show that the convergence of a large class of iteration methods follows from general properties of some classes of operators and from some general convergence theorems.
A First Course in Optimization
Author: Charles Byrne
Publisher: CRC Press
ISBN: 1482226588
Category : Business & Economics
Languages : en
Pages : 313
Book Description
Give Your Students the Proper Groundwork for Future Studies in OptimizationA First Course in Optimization is designed for a one-semester course in optimization taken by advanced undergraduate and beginning graduate students in the mathematical sciences and engineering. It teaches students the basics of continuous optimization and helps them better
Publisher: CRC Press
ISBN: 1482226588
Category : Business & Economics
Languages : en
Pages : 313
Book Description
Give Your Students the Proper Groundwork for Future Studies in OptimizationA First Course in Optimization is designed for a one-semester course in optimization taken by advanced undergraduate and beginning graduate students in the mathematical sciences and engineering. It teaches students the basics of continuous optimization and helps them better
Robust Optimization
Author: Aharon Ben-Tal
Publisher: Princeton University Press
ISBN: 1400831059
Category : Mathematics
Languages : en
Pages : 565
Book Description
Robust optimization is still a relatively new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of the subject. Robust optimization is designed to meet some major challenges associated with uncertainty-affected optimization problems: to operate under lack of full information on the nature of uncertainty; to model the problem in a form that can be solved efficiently; and to provide guarantees about the performance of the solution. The book starts with a relatively simple treatment of uncertain linear programming, proceeding with a deep analysis of the interconnections between the construction of appropriate uncertainty sets and the classical chance constraints (probabilistic) approach. It then develops the robust optimization theory for uncertain conic quadratic and semidefinite optimization problems and dynamic (multistage) problems. The theory is supported by numerous examples and computational illustrations. An essential book for anyone working on optimization and decision making under uncertainty, Robust Optimization also makes an ideal graduate textbook on the subject.
Publisher: Princeton University Press
ISBN: 1400831059
Category : Mathematics
Languages : en
Pages : 565
Book Description
Robust optimization is still a relatively new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of the subject. Robust optimization is designed to meet some major challenges associated with uncertainty-affected optimization problems: to operate under lack of full information on the nature of uncertainty; to model the problem in a form that can be solved efficiently; and to provide guarantees about the performance of the solution. The book starts with a relatively simple treatment of uncertain linear programming, proceeding with a deep analysis of the interconnections between the construction of appropriate uncertainty sets and the classical chance constraints (probabilistic) approach. It then develops the robust optimization theory for uncertain conic quadratic and semidefinite optimization problems and dynamic (multistage) problems. The theory is supported by numerous examples and computational illustrations. An essential book for anyone working on optimization and decision making under uncertainty, Robust Optimization also makes an ideal graduate textbook on the subject.
Parallel Optimization
Author: Yair Censor
Publisher: Oxford University Press, USA
ISBN: 9780195100624
Category : Computers
Languages : en
Pages : 574
Book Description
This book offers a unique pathway to methods of parallel optimization by introducing parallel computing ideas into both optimization theory and into some numerical algorithms for large-scale optimization problems. The three parts of the book bring together relevant theory, careful study of algorithms, and modeling of significant real world problems such as image reconstruction, radiation therapy treatment planning, financial planning, transportation and multi-commodity network flow problems, planning under uncertainty, and matrix balancing problems.
Publisher: Oxford University Press, USA
ISBN: 9780195100624
Category : Computers
Languages : en
Pages : 574
Book Description
This book offers a unique pathway to methods of parallel optimization by introducing parallel computing ideas into both optimization theory and into some numerical algorithms for large-scale optimization problems. The three parts of the book bring together relevant theory, careful study of algorithms, and modeling of significant real world problems such as image reconstruction, radiation therapy treatment planning, financial planning, transportation and multi-commodity network flow problems, planning under uncertainty, and matrix balancing problems.
Applied Iterative Methods
Author: Charles L. Byrne
Publisher: A K Peters/CRC Press
ISBN:
Category : Mathematics
Languages : en
Pages : 408
Book Description
This book is a collection of essays on iterative algorithms and their uses. It focuses on the mathematics of medical image reconstruction, with emphasis on Fourier inversion. The book discusses the problems and algorithms in the context of operators on finite-dimensional Euclidean space.
Publisher: A K Peters/CRC Press
ISBN:
Category : Mathematics
Languages : en
Pages : 408
Book Description
This book is a collection of essays on iterative algorithms and their uses. It focuses on the mathematics of medical image reconstruction, with emphasis on Fourier inversion. The book discusses the problems and algorithms in the context of operators on finite-dimensional Euclidean space.