Author: T. A. Burton
Publisher: Courier Corporation
ISBN: 0486150453
Category : Mathematics
Languages : en
Pages : 370
Book Description
This book's discussion of a broad class of differential equations includes linear differential and integrodifferential equations, fixed-point theory, and the basic stability and periodicity theory for nonlinear ordinary and functional differential equations.
Stability & Periodic Solutions of Ordinary & Functional Differential Equations
Author: T. A. Burton
Publisher: Courier Corporation
ISBN: 0486150453
Category : Mathematics
Languages : en
Pages : 370
Book Description
This book's discussion of a broad class of differential equations includes linear differential and integrodifferential equations, fixed-point theory, and the basic stability and periodicity theory for nonlinear ordinary and functional differential equations.
Publisher: Courier Corporation
ISBN: 0486150453
Category : Mathematics
Languages : en
Pages : 370
Book Description
This book's discussion of a broad class of differential equations includes linear differential and integrodifferential equations, fixed-point theory, and the basic stability and periodicity theory for nonlinear ordinary and functional differential equations.
Almost Periodic Solutions of Impulsive Differential Equations
Author: Gani T. Stamov
Publisher: Springer Science & Business Media
ISBN: 3642275451
Category : Mathematics
Languages : en
Pages : 235
Book Description
In the present book a systematic exposition of the results related to almost periodic solutions of impulsive differential equations is given and the potential for their application is illustrated.
Publisher: Springer Science & Business Media
ISBN: 3642275451
Category : Mathematics
Languages : en
Pages : 235
Book Description
In the present book a systematic exposition of the results related to almost periodic solutions of impulsive differential equations is given and the potential for their application is illustrated.
Impulsive Differential Equations
Author: Drumi Bainov
Publisher: Routledge
ISBN: 1351439103
Category : Mathematics
Languages : en
Pages : 238
Book Description
Impulsive differential equations have been the subject of intense investigation in the last 10-20 years, due to the wide possibilities for their application in numerous fields of science and technology. This new work presents a systematic exposition of the results solving all of the more important problems in this field.
Publisher: Routledge
ISBN: 1351439103
Category : Mathematics
Languages : en
Pages : 238
Book Description
Impulsive differential equations have been the subject of intense investigation in the last 10-20 years, due to the wide possibilities for their application in numerous fields of science and technology. This new work presents a systematic exposition of the results solving all of the more important problems in this field.
Two-Point Boundary Value Problems: Lower and Upper Solutions
Author: C. De Coster
Publisher: Elsevier
ISBN: 0080462472
Category : Mathematics
Languages : en
Pages : 502
Book Description
This book introduces the method of lower and upper solutions for ordinary differential equations. This method is known to be both easy and powerful to solve second order boundary value problems. Besides an extensive introduction to the method, the first half of the book describes some recent and more involved results on this subject. These concern the combined use of the method with degree theory, with variational methods and positive operators. The second half of the book concerns applications. This part exemplifies the method and provides the reader with a fairly large introduction to the problematic of boundary value problems. Although the book concerns mainly ordinary differential equations, some attention is given to other settings such as partial differential equations or functional differential equations. A detailed history of the problem is described in the introduction.· Presents the fundamental features of the method· Construction of lower and upper solutions in problems· Working applications and illustrated theorems by examples· Description of the history of the method and Bibliographical notes
Publisher: Elsevier
ISBN: 0080462472
Category : Mathematics
Languages : en
Pages : 502
Book Description
This book introduces the method of lower and upper solutions for ordinary differential equations. This method is known to be both easy and powerful to solve second order boundary value problems. Besides an extensive introduction to the method, the first half of the book describes some recent and more involved results on this subject. These concern the combined use of the method with degree theory, with variational methods and positive operators. The second half of the book concerns applications. This part exemplifies the method and provides the reader with a fairly large introduction to the problematic of boundary value problems. Although the book concerns mainly ordinary differential equations, some attention is given to other settings such as partial differential equations or functional differential equations. A detailed history of the problem is described in the introduction.· Presents the fundamental features of the method· Construction of lower and upper solutions in problems· Working applications and illustrated theorems by examples· Description of the history of the method and Bibliographical notes
Generalized Ordinary Differential Equations
Author: Jaroslav Kurzweil
Publisher: World Scientific
ISBN: 9814324027
Category : Mathematics
Languages : en
Pages : 208
Book Description
Explores the basics of social policy and program analysis, such as designing new programs or evaluating and improving existing ones. Social Policy and Social Programs is distinctive in providing specific criteria for judging the effectiveness of social policies and programs. These criteria can be applied to the analysis of widely different social services such as counseling and therapeutic services, supportive assistance, and "hard" benefits like food stamps, cash, and housing vouchers. By focusing especially on social problems, policies, and programs in major practice areas like child welfare, health, poverty, and mental illness, the author provides students with the tools they need to understand and evaluate the programs in which they are doing their field placements. Upon completing this book readers will be able to: Analyze the effectiveness of current social programs Create new programs based on the criteria provided Apply what they have learned to evaluate their field placement programs Note: MySearchLab does not come automatically packaged with this text. To purchase MySearchLab, please visit: www.mysearchlab.com or you can purchase a ValuePack of the text + MySearchLab (at no additional cost): ValuePack ISBN-10: 0205222943 / ValuePack ISBN-13: 9780205222940.
Publisher: World Scientific
ISBN: 9814324027
Category : Mathematics
Languages : en
Pages : 208
Book Description
Explores the basics of social policy and program analysis, such as designing new programs or evaluating and improving existing ones. Social Policy and Social Programs is distinctive in providing specific criteria for judging the effectiveness of social policies and programs. These criteria can be applied to the analysis of widely different social services such as counseling and therapeutic services, supportive assistance, and "hard" benefits like food stamps, cash, and housing vouchers. By focusing especially on social problems, policies, and programs in major practice areas like child welfare, health, poverty, and mental illness, the author provides students with the tools they need to understand and evaluate the programs in which they are doing their field placements. Upon completing this book readers will be able to: Analyze the effectiveness of current social programs Create new programs based on the criteria provided Apply what they have learned to evaluate their field placement programs Note: MySearchLab does not come automatically packaged with this text. To purchase MySearchLab, please visit: www.mysearchlab.com or you can purchase a ValuePack of the text + MySearchLab (at no additional cost): ValuePack ISBN-10: 0205222943 / ValuePack ISBN-13: 9780205222940.
Ordinary Differential Equations
Author: Nicolas Rouche
Publisher: Pitman Advanced Publishing Program
ISBN:
Category : Mathematics
Languages : en
Pages : 280
Book Description
Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.
Publisher: Pitman Advanced Publishing Program
ISBN:
Category : Mathematics
Languages : en
Pages : 280
Book Description
Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.
Weak Solutions of Ordinary Differential Equations
Author: Jan Ligęza
Publisher:
ISBN:
Category : Differential equations
Languages : en
Pages : 130
Book Description
Publisher:
ISBN:
Category : Differential equations
Languages : en
Pages : 130
Book Description
Ordinary Differential Equations and Dynamical Systems
Author: Gerald Teschl
Publisher: American Mathematical Society
ISBN: 147047641X
Category : Mathematics
Languages : en
Pages : 370
Book Description
This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.
Publisher: American Mathematical Society
ISBN: 147047641X
Category : Mathematics
Languages : en
Pages : 370
Book Description
This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.
Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Author: Everaldo M. Bonotto
Publisher: John Wiley & Sons
ISBN: 1119654939
Category : Mathematics
Languages : en
Pages : 514
Book Description
GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS IN ABSTRACT SPACES AND APPLICATIONS Explore a unified view of differential equations through the use of the generalized ODE from leading academics in mathematics Generalized Ordinary Differential Equations in Abstract Spaces and Applications delivers a comprehensive treatment of new results of the theory of Generalized ODEs in abstract spaces. The book covers applications to other types of differential equations, including Measure Functional Differential Equations (measure FDEs). It presents a uniform collection of qualitative results of Generalized ODEs and offers readers an introduction to several theories, including ordinary differential equations, impulsive differential equations, functional differential equations, dynamical equations on time scales, and more. Throughout the book, the focus is on qualitative theory and on corresponding results for other types of differential equations, as well as the connection between Generalized Ordinary Differential Equations and impulsive differential equations, functional differential equations, measure differential equations and dynamic equations on time scales. The book’s descriptions will be of use in many mathematical contexts, as well as in the social and natural sciences. Readers will also benefit from the inclusion of: A thorough introduction to regulated functions, including their basic properties, equiregulated sets, uniform convergence, and relatively compact sets An exploration of the Kurzweil integral, including its definitions and basic properties A discussion of measure functional differential equations, including impulsive measure FDEs The interrelationship between generalized ODEs and measure FDEs A treatment of the basic properties of generalized ODEs, including the existence and uniqueness of solutions, and prolongation and maximal solutions Perfect for researchers and graduate students in Differential Equations and Dynamical Systems, Generalized Ordinary Differential Equations in Abstract Spaces and Applications will also earn a place in the libraries of advanced undergraduate students taking courses in the subject and hoping to move onto graduate studies.
Publisher: John Wiley & Sons
ISBN: 1119654939
Category : Mathematics
Languages : en
Pages : 514
Book Description
GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS IN ABSTRACT SPACES AND APPLICATIONS Explore a unified view of differential equations through the use of the generalized ODE from leading academics in mathematics Generalized Ordinary Differential Equations in Abstract Spaces and Applications delivers a comprehensive treatment of new results of the theory of Generalized ODEs in abstract spaces. The book covers applications to other types of differential equations, including Measure Functional Differential Equations (measure FDEs). It presents a uniform collection of qualitative results of Generalized ODEs and offers readers an introduction to several theories, including ordinary differential equations, impulsive differential equations, functional differential equations, dynamical equations on time scales, and more. Throughout the book, the focus is on qualitative theory and on corresponding results for other types of differential equations, as well as the connection between Generalized Ordinary Differential Equations and impulsive differential equations, functional differential equations, measure differential equations and dynamic equations on time scales. The book’s descriptions will be of use in many mathematical contexts, as well as in the social and natural sciences. Readers will also benefit from the inclusion of: A thorough introduction to regulated functions, including their basic properties, equiregulated sets, uniform convergence, and relatively compact sets An exploration of the Kurzweil integral, including its definitions and basic properties A discussion of measure functional differential equations, including impulsive measure FDEs The interrelationship between generalized ODEs and measure FDEs A treatment of the basic properties of generalized ODEs, including the existence and uniqueness of solutions, and prolongation and maximal solutions Perfect for researchers and graduate students in Differential Equations and Dynamical Systems, Generalized Ordinary Differential Equations in Abstract Spaces and Applications will also earn a place in the libraries of advanced undergraduate students taking courses in the subject and hoping to move onto graduate studies.
Functional Differential Equations with Infinite Delay
Author: Yoshiyuki Hino
Publisher: Springer
ISBN: 3540473882
Category : Mathematics
Languages : en
Pages : 326
Book Description
In the theory of functional differential equations with infinite delay, there are several ways to choose the space of initial functions (phase space); and diverse (duplicated) theories arise, according to the choice of phase space. To unify the theories, an axiomatic approach has been taken since the 1960's. This book is intended as a guide for the axiomatic approach to the theory of equations with infinite delay and a culmination of the results obtained in this way. It can also be used as a textbook for a graduate course. The prerequisite knowledge is foundations of analysis including linear algebra and functional analysis. It is hoped that the book will prepare students for further study of this area, and that will serve as a ready reference to the researchers in applied analysis and engineering sciences.
Publisher: Springer
ISBN: 3540473882
Category : Mathematics
Languages : en
Pages : 326
Book Description
In the theory of functional differential equations with infinite delay, there are several ways to choose the space of initial functions (phase space); and diverse (duplicated) theories arise, according to the choice of phase space. To unify the theories, an axiomatic approach has been taken since the 1960's. This book is intended as a guide for the axiomatic approach to the theory of equations with infinite delay and a culmination of the results obtained in this way. It can also be used as a textbook for a graduate course. The prerequisite knowledge is foundations of analysis including linear algebra and functional analysis. It is hoped that the book will prepare students for further study of this area, and that will serve as a ready reference to the researchers in applied analysis and engineering sciences.