Peculiarities of Structural and Behavioral Changes of Some Zirconium Alloys at Damage Doses of Up to 50 Dpa

Peculiarities of Structural and Behavioral Changes of Some Zirconium Alloys at Damage Doses of Up to 50 Dpa PDF Author: VN. Shishov
Publisher:
ISBN:
Category : Damage dose
Languages : en
Pages : 14

Get Book Here

Book Description
The irradiation-induced damage of zirconium alloys subjected to neutron irradiation up to dose levels of ~50 dpa was investigated. Specimens of unalloyed zirconium, Zr-1%Nb, Zr-2.5%Nb and Zr-1%Nb-1.3%Sn-0.4%Fe were irradiated in the BOR-60 reactor over the temperature range 320-420°C. The dose dependence of the irradiation growth strain increased sharply in zirconium and Zr-Nb irradiated at ~350°C at doses above ~10 dpa. In the case of Zr-1%Nb-1.3%Sn-0.4%Fe, it increased at doses of ~37 dpa. Upon increasing the irradiation temperature to 420°C, a sharp accelerated irradiation growth of the Zr-1%Nb alloy began shifting up to about 30 dpa. For the Zr- 1%Nb-1.3%Sn-0.4%Fe, no change of the irradiation growth rate was observed up to a dose of 55 dpa. The onset of increased irradiation growth in alloys correlates with the occurrence of c-component dislocation loops which coincides with a loss of coherence of finely-dispersed precipitates. Post-irradiation annealing experiments demonstrated that a delay in loop formation leads to displacement of the "break-away" beginning in the dose dependence of the irradiation growth in the direction of high doses. The a+c-type dislocation loops were also formed in Zr-1%Nb alloy at high doses, but their influence on the change of macroscopic properties was not observed.