Pattern Classifiers and Trainable Machines

Pattern Classifiers and Trainable Machines PDF Author: J. Sklansky
Publisher: Springer Science & Business Media
ISBN: 1461258383
Category : Technology & Engineering
Languages : en
Pages : 345

Get Book Here

Book Description
This book is the outgrowth of both a research program and a graduate course at the University of California, Irvine (UCI) since 1966, as well as a graduate course at the California State Polytechnic University, Pomona (Cal Poly Pomona). The research program, part of the UCI Pattern Recogni tion Project, was concerned with the design of trainable classifiers; the graduate courses were broader in scope, including subjects such as feature selection, cluster analysis, choice of data set, and estimates of probability densities. In the interest of minimizing overlap with other books on pattern recogni tion or classifier theory, we have selected a few topics of special interest for this book, and treated them in some depth. Some of this material has not been previously published. The book is intended for use as a guide to the designer of pattern classifiers, or as a text in a graduate course in an engi neering or computer science curriculum. Although this book is directed primarily to engineers and computer scientists, it may also be of interest to psychologists, biologists, medical scientists, and social scientists.

Pattern Classifiers and Trainable Machines

Pattern Classifiers and Trainable Machines PDF Author: J. Sklansky
Publisher: Springer Science & Business Media
ISBN: 1461258383
Category : Technology & Engineering
Languages : en
Pages : 345

Get Book Here

Book Description
This book is the outgrowth of both a research program and a graduate course at the University of California, Irvine (UCI) since 1966, as well as a graduate course at the California State Polytechnic University, Pomona (Cal Poly Pomona). The research program, part of the UCI Pattern Recogni tion Project, was concerned with the design of trainable classifiers; the graduate courses were broader in scope, including subjects such as feature selection, cluster analysis, choice of data set, and estimates of probability densities. In the interest of minimizing overlap with other books on pattern recogni tion or classifier theory, we have selected a few topics of special interest for this book, and treated them in some depth. Some of this material has not been previously published. The book is intended for use as a guide to the designer of pattern classifiers, or as a text in a graduate course in an engi neering or computer science curriculum. Although this book is directed primarily to engineers and computer scientists, it may also be of interest to psychologists, biologists, medical scientists, and social scientists.

Patterns, Predictions, and Actions: Foundations of Machine Learning

Patterns, Predictions, and Actions: Foundations of Machine Learning PDF Author: Moritz Hardt
Publisher: Princeton University Press
ISBN: 0691233721
Category : Computers
Languages : en
Pages : 321

Get Book Here

Book Description
An authoritative, up-to-date graduate textbook on machine learning that highlights its historical context and societal impacts Patterns, Predictions, and Actions introduces graduate students to the essentials of machine learning while offering invaluable perspective on its history and social implications. Beginning with the foundations of decision making, Moritz Hardt and Benjamin Recht explain how representation, optimization, and generalization are the constituents of supervised learning. They go on to provide self-contained discussions of causality, the practice of causal inference, sequential decision making, and reinforcement learning, equipping readers with the concepts and tools they need to assess the consequences that may arise from acting on statistical decisions. Provides a modern introduction to machine learning, showing how data patterns support predictions and consequential actions Pays special attention to societal impacts and fairness in decision making Traces the development of machine learning from its origins to today Features a novel chapter on machine learning benchmarks and datasets Invites readers from all backgrounds, requiring some experience with probability, calculus, and linear algebra An essential textbook for students and a guide for researchers

Fundamentals of Digital Image Processing

Fundamentals of Digital Image Processing PDF Author: S. Annadurai
Publisher: Pearson Education India
ISBN: 9788177584790
Category : Electronic books
Languages : en
Pages : 444

Get Book Here

Book Description


Signal Processing Handbook

Signal Processing Handbook PDF Author: C.H. Chen
Publisher: CRC Press
ISBN: 9780824779566
Category : Technology & Engineering
Languages : en
Pages : 846

Get Book Here

Book Description
Introductory, systematic treatment of the many interrelated aspects. Twenty-three contributions address the fundamentals, spectral estimation algorithms, image processing, land and ocean seismic data, telecommunications, 3-D object reconstructions. Alk. paper. Annotation copyright Book News, Inc. Po

Decomposition Methodology for Knowledge Discovery and Data Mining

Decomposition Methodology for Knowledge Discovery and Data Mining PDF Author: Oded Z. Maimon
Publisher: World Scientific
ISBN: 9812560793
Category : Computers
Languages : en
Pages : 346

Get Book Here

Book Description
Data Mining is the science and technology of exploring data in order to discover previously unknown patterns. It is a part of the overall process of Knowledge Discovery in Databases (KDD). The accessibility and abundance of information today makes data mining a matter of considerable importance and necessity. This book provides an introduction to the field with an emphasis on advanced decomposition methods in general data mining tasks and for classification tasks in particular. The book presents a complete methodology for decomposing classification problems into smaller and more manageable sub-problems that are solvable by using existing tools. The various elements are then joined together to solve the initial problem.The benefits of decomposition methodology in data mining include: increased performance (classification accuracy); conceptual simplification of the problem; enhanced feasibility for huge databases; clearer and more comprehensible results; reduced runtime by solving smaller problems and by using parallel/distributed computation; and the opportunity of using different techniques for individual sub-problems.

Intelligent Systems

Intelligent Systems PDF Author: Cornelius T. Leondes
Publisher: CRC Press
ISBN: 1420040812
Category : Technology & Engineering
Languages : en
Pages : 2208

Get Book Here

Book Description
Intelligent systems, or artificial intelligence technologies, are playing an increasing role in areas ranging from medicine to the major manufacturing industries to financial markets. The consequences of flawed artificial intelligence systems are equally wide ranging and can be seen, for example, in the programmed trading-driven stock market crash of October 19, 1987. Intelligent Systems: Technology and Applications, Six Volume Set connects theory with proven practical applications to provide broad, multidisciplinary coverage in a single resource. In these volumes, international experts present case-study examples of successful practical techniques and solutions for diverse applications ranging from robotic systems to speech and signal processing, database management, and manufacturing.

Fuzzy Sets & their Application to Clustering & Training

Fuzzy Sets & their Application to Clustering & Training PDF Author: Beatrice Lazzerini
Publisher: CRC Press
ISBN: 9780849305894
Category : Computers
Languages : en
Pages : 672

Get Book Here

Book Description
Fuzzy set theory - and its underlying fuzzy logic - represents one of the most significant scientific and cultural paradigms to emerge in the last half-century. Its theoretical and technological promise is vast, and we are only beginning to experience its potential. Clustering is the first and most basic application of fuzzy set theory, but forms the basis of many, more sophisticated, intelligent computational models, particularly in pattern recognition, data mining, adaptive and hierarchical clustering, and classifier design. Fuzzy Sets and their Application to Clustering and Training offers a comprehensive introduction to fuzzy set theory, focusing on the concepts and results needed for training and clustering applications. It provides a unified mathematical framework for fuzzy classification and clustering, a methodology for developing training and classification methods, and a general method for obtaining a variety of fuzzy clustering algorithms. The authors - top experts from around the world - combine their talents to lay a solid foundation for applications of this powerful tool, from the basic concepts and mathematics through the study of various algorithms, to validity functionals and hierarchical clustering. The result is Fuzzy Sets and their Application to Clustering and Training - an outstanding initiation into the world of fuzzy learning classifiers and fuzzy clustering.

Advances in Logic, Artificial Intelligence and Robotics

Advances in Logic, Artificial Intelligence and Robotics PDF Author: Jair Minoro Abe
Publisher: IOS Press
ISBN: 9781586032920
Category : Computers
Languages : en
Pages : 296

Get Book Here

Book Description
Logic (both Classical and Non-Classical) is being increasingly related with other fields in almost every scientific discipline and human activity. In this volume we have emphasized its role in the following fields of science: Artificial Intelligence, Robotics, Informatics in general, Technology, and correlated themes. The papers are written by some of the most prominent scientists of today.

Data Mining With Decision Trees: Theory And Applications (2nd Edition)

Data Mining With Decision Trees: Theory And Applications (2nd Edition) PDF Author: Oded Z Maimon
Publisher: World Scientific
ISBN: 9814590096
Category : Computers
Languages : en
Pages : 328

Get Book Here

Book Description
Decision trees have become one of the most powerful and popular approaches in knowledge discovery and data mining; it is the science of exploring large and complex bodies of data in order to discover useful patterns. Decision tree learning continues to evolve over time. Existing methods are constantly being improved and new methods introduced.This 2nd Edition is dedicated entirely to the field of decision trees in data mining; to cover all aspects of this important technique, as well as improved or new methods and techniques developed after the publication of our first edition. In this new edition, all chapters have been revised and new topics brought in. New topics include Cost-Sensitive Active Learning, Learning with Uncertain and Imbalanced Data, Using Decision Trees beyond Classification Tasks, Privacy Preserving Decision Tree Learning, Lessons Learned from Comparative Studies, and Learning Decision Trees for Big Data. A walk-through guide to existing open-source data mining software is also included in this edition.This book invites readers to explore the many benefits in data mining that decision trees offer:

Neurocomputing

Neurocomputing PDF Author: James A. Anderson
Publisher: MIT Press
ISBN: 0262510758
Category : Computers
Languages : en
Pages : 762

Get Book Here

Book Description
In bringing together seminal articles on the foundations of research, the first volume of Neurocomputing has become an established guide to the background of concepts employed in this burgeoning field. Neurocomputing 2 collects forty-one articles covering network architecture, neurobiological computation, statistics and pattern classification, and problems and applications that suggest important directions for the evolution of neurocomputing.James A. Anderson is Professor in the Department of Cognitive and Linguistic Sciences at Brown University. Andras Pellionisz is a Research Associate Professor in the Department of Physiology and Biophysics at New York Medical Center and a Senior National Research Council Associate to NASA. Edward Rosenfeld is editor and publisher of the newsletters Intelligence and Medical Intelligence.