Particle-based Mesoscale Modeling of Flow and Transport in Complex Fluids

Particle-based Mesoscale Modeling of Flow and Transport in Complex Fluids PDF Author: Erkan Tüzel
Publisher:
ISBN:
Category :
Languages : en
Pages : 514

Get Book Here

Book Description

Particle-based Mesoscale Modeling of Flow and Transport in Complex Fluids

Particle-based Mesoscale Modeling of Flow and Transport in Complex Fluids PDF Author: Erkan Tüzel
Publisher:
ISBN:
Category :
Languages : en
Pages : 514

Get Book Here

Book Description


Mathematical Modeling for Complex Fluids and Flows

Mathematical Modeling for Complex Fluids and Flows PDF Author: Michel Deville
Publisher: Springer Science & Business Media
ISBN: 364225294X
Category : Mathematics
Languages : en
Pages : 278

Get Book Here

Book Description
Mathematical Modeling for Complex Fluids and Flows provides researchers and engineering practitioners encountering fluid flows with state-of-the-art knowledge in continuum concepts and associated fluid dynamics. In doing so it supplies the means to design mathematical models of these flows that adequately express the engineering physics involved. It exploits the implicit link between the turbulent flow of classical Newtonian fluids and the laminar and turbulent flow of non-Newtonian fluids such as those required in food processing and polymeric flows. The book develops a descriptive mathematical model articulated through continuum mechanics concepts for these non-Newtonian, viscoelastic fluids and turbulent flows. Each complex fluid and flow is examined in this continuum context as well as in combination with the turbulent flow of viscoelastic fluids. Some details are also explored via kinetic theory, especially viscoelastic fluids and their treatment with the Boltzmann equation. Both solution and modeling strategies for turbulent flows are laid out using continuum concepts, including a description of constructing polynomial representations and accounting for non-inertial and curvature effects. Ranging from fundamental concepts to practical methodology, and including discussion of emerging technologies, this book is ideal for those requiring a single-source assessment of current practice in this intricate yet vital field.

Advanced Computer Simulation Approaches for Soft Matter Sciences I

Advanced Computer Simulation Approaches for Soft Matter Sciences I PDF Author: Christian Holm
Publisher: Springer Science & Business Media
ISBN: 9783540220589
Category : Science
Languages : en
Pages : 296

Get Book Here

Book Description
Soft matter science is nowadays an acronym for an increasingly important class of materials, which ranges from polymers, liquid crystals, colloids up to complex macromolecular assemblies, covering sizes from the nanoscale up the microscale. Computer simulations have proven as an indispensable, if not the most powerful, tool to understand properties of these materials and link theoretical models to experiments. In this first volume of a small series recognized leaders of the field review advanced topics and provide critical insight into the state-of-the-art methods and scientific questions of this lively domain of soft condensed matter research.

Physics-Based and Data-Driven Mulitiscale Modeling of the Structural Formation in Macromolecular Systems (Band 25)

Physics-Based and Data-Driven Mulitiscale Modeling of the Structural Formation in Macromolecular Systems (Band 25) PDF Author: Philipp Nicolas Depta
Publisher: Cuvillier Verlag
ISBN: 3736969724
Category :
Languages : en
Pages : 297

Get Book Here

Book Description
In order to improve knowledge on macromolecular structural formation and self-assembly, this work proposes a physics-based and data-driven multiscale modeling framework capable of describing structural formation on micro-meter and milli-second scales near molecular-level precision. The framework abstracts macromolecules as anisotropic unit objects and models the interactions and environment using data-driven approaches. The models are parameterized in a bottom-up fashion and validated top-down by comparison with literature and collaborator data for self-assembly of three model system: alginate gelation, hepatitis B virus capsids, and the pyruvate dehydrogenase complex.

Multi-scale Phenomena in Complex Fluids

Multi-scale Phenomena in Complex Fluids PDF Author: Thomas Y. Hou
Publisher: World Scientific
ISBN: 9814273252
Category : Science
Languages : en
Pages : 379

Get Book Here

Book Description
Multi-Scale Phenomena in Complex Fluids is a collection of lecture notes delivered during the ªrst two series of mini-courses from "Shanghai Summer School on Analysis and Numerics in Modern Sciences," which was held in 2004 and 2006 at Fudan University, Shanghai, China. This review volume of 5 chapters, covering various fields in complex fluids, places emphasis on multi-scale modeling, analyses and simulations. It will be of special interest to researchers and graduate students who want to work in the field of complex fluids.

Multi-scale Phenomena In Complex Fluids: Modeling, Analysis And Numerical Simulations

Multi-scale Phenomena In Complex Fluids: Modeling, Analysis And Numerical Simulations PDF Author: Chun Liu
Publisher: World Scientific
ISBN: 9814467952
Category : Science
Languages : en
Pages : 379

Get Book Here

Book Description
Multi-Scale Phenomena in Complex Fluids is a collection of lecture notes delivered during the first two series of mini-courses from “Shanghai Summer School on Analysis and Numerics in Modern Sciences”, which was held in 2004 and 2006 at Fudan University, Shanghai, China.This review volume of 5 chapters, covering various fields in complex fluids, places emphasis on multi-scale modeling, analyses and simulations. It will be of special interest to researchers and graduate students who want to work in the field of complex fluids.

Transport Phenomena in Complex Fluids

Transport Phenomena in Complex Fluids PDF Author: Teodor Burghelea
Publisher: Springer Nature
ISBN: 3030355586
Category : Technology & Engineering
Languages : en
Pages : 402

Get Book Here

Book Description
This book provides a thorough overview of transport phenomena in complex fluids, based on the latest research results and the newest methods for their analytical prediction and numerical simulation. The respective chapters cover several topics, including: a description of the structural features of the most common complex fluids (polymer and surfactant solutions, colloidal suspensions); an introduction to the most common non-Newtonian constitutive models and their relationship with the fluid microstructure; a detailed overview of the experimental methods used to characterise the thermophysical properties, bulk rheology, and surface properties of complex fluids; a comprehensive introduction to heat, mass, and momentum transport, and to hydrodynamic instabilities in complex fluids; and an introduction to state-of-the-art numerical methods used to simulate complex fluid flows, with a focus on the Smoothed Particle Hydrodynamics (SPH) and the Dissipative Particle Dynamics (DPD) techniques. Subsequent chapters provide in-depth descriptions of phenomena such as thermal convection, elastic turbulence, mixing of complex fluids, thermophoresis, sedimentation, and non-Newtonian drops and sprays. The book addresses research scientists and professionals, engineers, R&D managers and graduate students in the fields of engineering, chemistry, biology, medicine, and the applied and fundamental sciences.

Computational Modeling for Fluid Flow and Interfacial Transport

Computational Modeling for Fluid Flow and Interfacial Transport PDF Author: W. Shyy
Publisher: Elsevier
ISBN: 1483290417
Category : Mathematics
Languages : en
Pages : 523

Get Book Here

Book Description
Transport processes are often characterized by the simultaneous presence of multiple dependent variables, multiple length scales, body forces, free boundaries and strong non-linearities. The various computational elements important for the prediction of complex fluid flows and interfacial transport are presented in this volume. Practical applications, presented in the form of illustrations and examples are emphasized, as well as physical interpretation of the computed results. The book is intended as a reference for researchers and graduate students in mechanical, aerospace, chemical and materials engineering. Both macroscopic and microscopic (but still continuum) features are addressed. In order to lay down a good foundation to facilitate discussion of more advanced techniques, the book has been divided into three parts. Part I presents the basic concepts of finite difference schemes for solving parabolic, elliptic and hyperbolic partial differential equations. Part II deals with issues related to computational modeling for fluid flow and transport phenomena. Existing algorithms to solve the Navier-Stokes equations can be generally classified as density-based methods and pressure-based methods. In this book the pressure-based method is emphasized. Recent efforts to improve the performance of the pressure-based algorithm, both qualitatively and quantitatively, are treated, including formulation of the algorithm and its generalization to all flow speeds, choice of coordinate system and primary velocity variables, issues of grid layout, open boundary treatment and the role of global mass conservation, convection treatment and convergence. Practical engineering applications, including gas-turbine combustor flow, heat transfer and convection in high pressure discharge lamps, thermal management under microgravity, and flow through hydraulic turbines are also discussed. Part III addresses the transport processes involving interfacial dynamics. Specifically those influenced by phase change, gravity, and capillarity are emphasized, and both the macroscopic and morphological (microscopic) scales are presented. Basic concepts of interface, capillarity, and phase change processes are summarized to help clarify physical mechanisms, followed by a discussion of recent developments in computational modeling. Numerical solutions are also discussed to illustrate the salient features of practical engineering applications. Fundamental features of interfacial dynamics have also been illustrated in the form of case studies, to demonstrate the interplay between fluid and thermal transport of macroscopic scales and their interaction with interfacial transport.

Advanced Computer Simulation Approaches for Soft Matter Sciences III

Advanced Computer Simulation Approaches for Soft Matter Sciences III PDF Author: Christian Holm
Publisher: Springer Science & Business Media
ISBN: 3540877053
Category : Technology & Engineering
Languages : en
Pages : 248

Get Book Here

Book Description
“Soft matter” is nowadays used to describe an increasingly important class of - terials that encompasses polymers, liquid crystals, molecular assemblies building hierarchical structures, organic-inorganic hybrids, and the whole area of colloidal science. Common to all is that ?uctuations, and thus the thermal energy k T and B entropy, play an important role. “Soft” then means that these materials are in a state of matter that is neither a simple liquid nor a hard solid of the type studied in hard condensed matter, hence sometimes many types of soft matter are also named “c- plex ?uids. ” Soft matter, either of synthetic or biological origin, has been a subject of physical and chemical research since the early ?nding of Staudinger that long chain mo- cules exist. From then on, synthetic chemistry as well as physical characterization underwent an enormous development. One of the outcomes is the abundant pr- ence of polymeric materials in our everyday life. Nowadays, methods developed for synthetic polymers are being more and more applied to biological soft matter. The link between modern biophysics and soft matter physics is quite close in many respects. This also means that the focus of research has moved from simple - mopolymers to more complex structures, such as branched objects, heteropolymers (random copolymers, proteins), polyelectrolytes, amphiphiles and so on.

An Introduction to Modeling and Simulation of Particulate Flows

An Introduction to Modeling and Simulation of Particulate Flows PDF Author: T. I. Zohdi
Publisher: SIAM
ISBN: 9780898718928
Category : Science
Languages : en
Pages : 194

Get Book Here

Book Description
The relatively recent increase in computational power available for mathematical modeling and simulation raises the possibility that modern numerical methods can play a significant role in the analysis of complex particulate flows. An Introduction to Modeling and Simulation of Particulate Flows focuses on basic models and physically based computational solution strategies for the direct and rapid simulation of flowing particulate media. Its emphasis is primarily on fluidized dry particulate flows in which there is no significant interstitial fluid, although fully coupled fluid-particle systems are discussed as well. An introduction to basic computational methods for ascertaining optical responses of particulate systems also is included. The successful analysis of a wide range of applications requires the simulation of flowing particulate media that simultaneously involves near-field interaction and contact between particles in a thermally sensitive environment. These systems naturally occur in astrophysics and geophysics; powder processing pharmaceutical industries; bio-, micro- and nanotechnologies; and applications arising from the study of spray processes involving aerosols, sputtering, and epitaxy. Audience: written for computational scientists, numerical analysts, and applied mathematicians, it will be of interest to civil and mechanical engineers and materials scientists. It is also suitable for first-year graduate students in the applied sciences, engineering, and applied mathematics who have an interest in the computational analysis of complex particulate flows.