Author: Martha L. Abell
Publisher: AP Professional
ISBN:
Category : Computers
Languages : en
Pages : 846
Book Description
The second edition of this groundbreaking book integrates new applications from a variety of fields, especially biology, physics, and engineering. The new handbook is also completely compatible with Mathematica version 3.0 and is a perfect introduction for Mathematica beginners. The CD-ROM contains built-in commands that let the users solve problems directly using graphical solutions.
Differential Equations with Mathematica
Author: Martha L. Abell
Publisher: AP Professional
ISBN:
Category : Computers
Languages : en
Pages : 846
Book Description
The second edition of this groundbreaking book integrates new applications from a variety of fields, especially biology, physics, and engineering. The new handbook is also completely compatible with Mathematica version 3.0 and is a perfect introduction for Mathematica beginners. The CD-ROM contains built-in commands that let the users solve problems directly using graphical solutions.
Publisher: AP Professional
ISBN:
Category : Computers
Languages : en
Pages : 846
Book Description
The second edition of this groundbreaking book integrates new applications from a variety of fields, especially biology, physics, and engineering. The new handbook is also completely compatible with Mathematica version 3.0 and is a perfect introduction for Mathematica beginners. The CD-ROM contains built-in commands that let the users solve problems directly using graphical solutions.
Partial Differential Equations with Mathematica
Author: Dimitri Dimitrievich Vvedensky
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Computers
Languages : en
Pages : 486
Book Description
An introduction to linear and nonlinear partial differential equations with extensive use of the popular computational mathematics computer program, Mathematica, to illustrate techniques and solutions and to provide examples that in many cases would not be practical otherwise. No prior knowledge of
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Computers
Languages : en
Pages : 486
Book Description
An introduction to linear and nonlinear partial differential equations with extensive use of the popular computational mathematics computer program, Mathematica, to illustrate techniques and solutions and to provide examples that in many cases would not be practical otherwise. No prior knowledge of
Introduction to Partial Differential Equations for Scientists and Engineers Using Mathematica
Author: Kuzman Adzievski
Publisher: CRC Press
ISBN: 1466510579
Category : Mathematics
Languages : en
Pages : 645
Book Description
With special emphasis on engineering and science applications, this textbook provides a mathematical introduction to the field of partial differential equations (PDEs). The text represents a new approach to PDEs at the undergraduate level by presenting computation as an integral part of the study of differential equations. The authors use the computer software Mathematica (R) along with graphics to improve understanding and interpretation of concepts. The book also presents solutions to selected examples as well as exercises in each chapter. Topics include Laplace and Fourier transforms as well as Sturm-Liuville Boundary Value Problems.
Publisher: CRC Press
ISBN: 1466510579
Category : Mathematics
Languages : en
Pages : 645
Book Description
With special emphasis on engineering and science applications, this textbook provides a mathematical introduction to the field of partial differential equations (PDEs). The text represents a new approach to PDEs at the undergraduate level by presenting computation as an integral part of the study of differential equations. The authors use the computer software Mathematica (R) along with graphics to improve understanding and interpretation of concepts. The book also presents solutions to selected examples as well as exercises in each chapter. Topics include Laplace and Fourier transforms as well as Sturm-Liuville Boundary Value Problems.
Partial Differential Equations and Mathematica
Author: Prem K. Kythe
Publisher: CRC Press
ISBN: 1482296322
Category : Mathematics
Languages : en
Pages : 441
Book Description
Early training in the elementary techniques of partial differential equations is invaluable to students in engineering and the sciences as well as mathematics. However, to be effective, an undergraduate introduction must be carefully designed to be challenging, yet still reasonable in its demands. Judging from the first edition's popularity, instructors and students agree that despite the subject's complexity, it can be made fairly easy to understand. Revised and updated to reflect the latest version of Mathematica, Partial Differential Equations and Boundary Value Problems with Mathematica, Second Edition meets the needs of mathematics, science, and engineering students even better. While retaining systematic coverage of theory and applications, the authors have made extensive changes that improve the text's accessibility, thoroughness, and practicality. New in this edition: Upgraded and expanded Mathematica sections that include more exercises An entire chapter on boundary value problems More on inverse operators, Legendre functions, and Bessel functions Simplified treatment of Green's functions that make it more accessible to undergraduates A section on the numerical computation of Green's functions Mathemcatica codes for solving most of the problems discussed Boundary value problems from continuum mechanics, particularly on boundary layers and fluctuating flows Wave propagation and dispersion With its emphasis firmly on solution methods, this book is ideal for any mathematics curricula. It succeeds not only in preparing readers to meet the challenge of PDEs, but also in imparting the inherent beauty and applicability of the subject.
Publisher: CRC Press
ISBN: 1482296322
Category : Mathematics
Languages : en
Pages : 441
Book Description
Early training in the elementary techniques of partial differential equations is invaluable to students in engineering and the sciences as well as mathematics. However, to be effective, an undergraduate introduction must be carefully designed to be challenging, yet still reasonable in its demands. Judging from the first edition's popularity, instructors and students agree that despite the subject's complexity, it can be made fairly easy to understand. Revised and updated to reflect the latest version of Mathematica, Partial Differential Equations and Boundary Value Problems with Mathematica, Second Edition meets the needs of mathematics, science, and engineering students even better. While retaining systematic coverage of theory and applications, the authors have made extensive changes that improve the text's accessibility, thoroughness, and practicality. New in this edition: Upgraded and expanded Mathematica sections that include more exercises An entire chapter on boundary value problems More on inverse operators, Legendre functions, and Bessel functions Simplified treatment of Green's functions that make it more accessible to undergraduates A section on the numerical computation of Green's functions Mathemcatica codes for solving most of the problems discussed Boundary value problems from continuum mechanics, particularly on boundary layers and fluctuating flows Wave propagation and dispersion With its emphasis firmly on solution methods, this book is ideal for any mathematics curricula. It succeeds not only in preparing readers to meet the challenge of PDEs, but also in imparting the inherent beauty and applicability of the subject.
Solving Nonlinear Partial Differential Equations with Maple and Mathematica
Author: Inna Shingareva
Publisher: Springer Science & Business Media
ISBN: 370910517X
Category : Mathematics
Languages : en
Pages : 372
Book Description
The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution).
Publisher: Springer Science & Business Media
ISBN: 370910517X
Category : Mathematics
Languages : en
Pages : 372
Book Description
The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution).
Numerical Solutions for Partial Differential Equations
Author: Victor Grigor'e Ganzha
Publisher: CRC Press
ISBN: 1351427520
Category : Mathematics
Languages : en
Pages : 365
Book Description
Partial differential equations (PDEs) play an important role in the natural sciences and technology, because they describe the way systems (natural and other) behave. The inherent suitability of PDEs to characterizing the nature, motion, and evolution of systems, has led to their wide-ranging use in numerical models that are developed in order to analyze systems that are not otherwise easily studied. Numerical Solutions for Partial Differential Equations contains all the details necessary for the reader to understand the principles and applications of advanced numerical methods for solving PDEs. In addition, it shows how the modern computer system algebra Mathematica® can be used for the analytic investigation of such numerical properties as stability, approximation, and dispersion.
Publisher: CRC Press
ISBN: 1351427520
Category : Mathematics
Languages : en
Pages : 365
Book Description
Partial differential equations (PDEs) play an important role in the natural sciences and technology, because they describe the way systems (natural and other) behave. The inherent suitability of PDEs to characterizing the nature, motion, and evolution of systems, has led to their wide-ranging use in numerical models that are developed in order to analyze systems that are not otherwise easily studied. Numerical Solutions for Partial Differential Equations contains all the details necessary for the reader to understand the principles and applications of advanced numerical methods for solving PDEs. In addition, it shows how the modern computer system algebra Mathematica® can be used for the analytic investigation of such numerical properties as stability, approximation, and dispersion.
Finite Difference Methods for Ordinary and Partial Differential Equations
Author: Randall J. LeVeque
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356
Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356
Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Symmetry Analysis of Differential Equations with Mathematica®
Author: Gerd Baumann
Publisher: Springer Science & Business Media
ISBN: 9780387985527
Category : Mathematics
Languages : en
Pages : 540
Book Description
The first book to explicitly use Mathematica so as to allow researchers and students to more easily compute and solve almost any kind of differential equation using Lie's theory. Previously time-consuming and cumbersome calculations are now much more easily and quickly performed using the Mathematica computer algebra software. The material in this book, and on the accompanying CD-ROM, will be of interest to a broad group of scientists, mathematicians and engineers involved in dealing with symmetry analysis of differential equations. Each section of the book starts with a theoretical discussion of the material, then shows the application in connection with Mathematica. The cross-platform CD-ROM contains Mathematica (version 3.0) notebooks which allow users to directly interact with the code presented within the book. In addition, the author's proprietary "MathLie" software is included, so users can readily learn to use this powerful tool in regard to performing algebraic computations.
Publisher: Springer Science & Business Media
ISBN: 9780387985527
Category : Mathematics
Languages : en
Pages : 540
Book Description
The first book to explicitly use Mathematica so as to allow researchers and students to more easily compute and solve almost any kind of differential equation using Lie's theory. Previously time-consuming and cumbersome calculations are now much more easily and quickly performed using the Mathematica computer algebra software. The material in this book, and on the accompanying CD-ROM, will be of interest to a broad group of scientists, mathematicians and engineers involved in dealing with symmetry analysis of differential equations. Each section of the book starts with a theoretical discussion of the material, then shows the application in connection with Mathematica. The cross-platform CD-ROM contains Mathematica (version 3.0) notebooks which allow users to directly interact with the code presented within the book. In addition, the author's proprietary "MathLie" software is included, so users can readily learn to use this powerful tool in regard to performing algebraic computations.
Partial Differential Equations
Author: Walter A. Strauss
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467
Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467
Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
A Journey Into Partial Differential Equations
Author: William O. Bray
Publisher: Jones & Bartlett Publishers
ISBN: 0763772569
Category : Mathematics
Languages : en
Pages : 334
Book Description
Part of the International Series in Mathematics Ideal for the 1-term course, A Journey into Partial Differential Equations provides a solid introduction to PDEs for the undergraduate math, engineering, or physics student. Discussing underlying physics, concepts and methodologies, the text focuses on the classical trinity of equations: the wave equation, heat/diffusion equation, and Laplace's equation. Bray provides careful treatment of the separation of variables and the Fourier method, motivated by the geometrical notion of symmetries and places emphasis on both the qualitative and quantitative methods, as well as geometrical perspectives. With hundred of exercises and a wealth of figures, A Journey into Partial Differential Equations proves to be the model book for the PDE course.
Publisher: Jones & Bartlett Publishers
ISBN: 0763772569
Category : Mathematics
Languages : en
Pages : 334
Book Description
Part of the International Series in Mathematics Ideal for the 1-term course, A Journey into Partial Differential Equations provides a solid introduction to PDEs for the undergraduate math, engineering, or physics student. Discussing underlying physics, concepts and methodologies, the text focuses on the classical trinity of equations: the wave equation, heat/diffusion equation, and Laplace's equation. Bray provides careful treatment of the separation of variables and the Fourier method, motivated by the geometrical notion of symmetries and places emphasis on both the qualitative and quantitative methods, as well as geometrical perspectives. With hundred of exercises and a wealth of figures, A Journey into Partial Differential Equations proves to be the model book for the PDE course.