Author: J. Peter May
Publisher: American Mathematical Soc.
ISBN: 0821839225
Category : Mathematics
Languages : en
Pages : 456
Book Description
This book develops rigorous foundations for parametrized homotopy theory, which is the algebraic topology of spaces and spectra that are continuously parametrized by the points of a base space. It also begins the systematic study of parametrized homology and cohomology theories. The parametrized world provides the natural home for many classical notions and results, such as orientation theory, the Thom isomorphism, Atiyah and Poincare duality, transfer maps, the Adams and Wirthmuller isomorphisms, and the Serre and Eilenberg-Moore spectral sequences. But in addition to providing a clearer conceptual outlook on these classical notions, it also provides powerful methods to study new phenomena, such as twisted $K$-theory, and to make new constructions, such as iterated Thom spectra. Duality theory in the parametrized setting is particularly illuminating and comes in two flavors. One allows the construction and analysis of transfer maps, and a quite different one relates parametrized homology to parametrized cohomology. The latter is based formally on a new theory of duality in symmetric bicategories that is of considerable independent interest. The text brings together many recent developments in homotopy theory. It provides a highly structured theory of parametrized spectra, and it extends parametrized homotopy theory to the equivariant setting. The theory of topological model categories is given a more thorough treatment than is available in the literature. This is used, together with an interesting blend of classical methods, to resolve basic foundational problems that have no nonparametrized counterparts.
Parametrized Homotopy Theory
Author: J. Peter May
Publisher: American Mathematical Soc.
ISBN: 0821839225
Category : Mathematics
Languages : en
Pages : 456
Book Description
This book develops rigorous foundations for parametrized homotopy theory, which is the algebraic topology of spaces and spectra that are continuously parametrized by the points of a base space. It also begins the systematic study of parametrized homology and cohomology theories. The parametrized world provides the natural home for many classical notions and results, such as orientation theory, the Thom isomorphism, Atiyah and Poincare duality, transfer maps, the Adams and Wirthmuller isomorphisms, and the Serre and Eilenberg-Moore spectral sequences. But in addition to providing a clearer conceptual outlook on these classical notions, it also provides powerful methods to study new phenomena, such as twisted $K$-theory, and to make new constructions, such as iterated Thom spectra. Duality theory in the parametrized setting is particularly illuminating and comes in two flavors. One allows the construction and analysis of transfer maps, and a quite different one relates parametrized homology to parametrized cohomology. The latter is based formally on a new theory of duality in symmetric bicategories that is of considerable independent interest. The text brings together many recent developments in homotopy theory. It provides a highly structured theory of parametrized spectra, and it extends parametrized homotopy theory to the equivariant setting. The theory of topological model categories is given a more thorough treatment than is available in the literature. This is used, together with an interesting blend of classical methods, to resolve basic foundational problems that have no nonparametrized counterparts.
Publisher: American Mathematical Soc.
ISBN: 0821839225
Category : Mathematics
Languages : en
Pages : 456
Book Description
This book develops rigorous foundations for parametrized homotopy theory, which is the algebraic topology of spaces and spectra that are continuously parametrized by the points of a base space. It also begins the systematic study of parametrized homology and cohomology theories. The parametrized world provides the natural home for many classical notions and results, such as orientation theory, the Thom isomorphism, Atiyah and Poincare duality, transfer maps, the Adams and Wirthmuller isomorphisms, and the Serre and Eilenberg-Moore spectral sequences. But in addition to providing a clearer conceptual outlook on these classical notions, it also provides powerful methods to study new phenomena, such as twisted $K$-theory, and to make new constructions, such as iterated Thom spectra. Duality theory in the parametrized setting is particularly illuminating and comes in two flavors. One allows the construction and analysis of transfer maps, and a quite different one relates parametrized homology to parametrized cohomology. The latter is based formally on a new theory of duality in symmetric bicategories that is of considerable independent interest. The text brings together many recent developments in homotopy theory. It provides a highly structured theory of parametrized spectra, and it extends parametrized homotopy theory to the equivariant setting. The theory of topological model categories is given a more thorough treatment than is available in the literature. This is used, together with an interesting blend of classical methods, to resolve basic foundational problems that have no nonparametrized counterparts.
New Directions in Homotopy Theory
Author: Nitya Kitchloo, Mona Merling
Publisher: American Mathematical Soc.
ISBN: 1470437740
Category : Mathematics
Languages : en
Pages : 208
Book Description
This volume contains the proceedings of the Second Mid-Atlantic Topology Conference, held from March 12–13, 2016, at Johns Hopkins University in Baltimore, Maryland. The focus of the conference, and subsequent papers, was on applications of innovative methods from homotopy theory in category theory, algebraic geometry, and related areas, emphasizing the work of younger researchers in these fields.
Publisher: American Mathematical Soc.
ISBN: 1470437740
Category : Mathematics
Languages : en
Pages : 208
Book Description
This volume contains the proceedings of the Second Mid-Atlantic Topology Conference, held from March 12–13, 2016, at Johns Hopkins University in Baltimore, Maryland. The focus of the conference, and subsequent papers, was on applications of innovative methods from homotopy theory in category theory, algebraic geometry, and related areas, emphasizing the work of younger researchers in these fields.
Handbook of Homotopy Theory
Author: Haynes Miller
Publisher: CRC Press
ISBN: 1351251600
Category : Mathematics
Languages : en
Pages : 1142
Book Description
The Handbook of Homotopy Theory provides a panoramic view of an active area in mathematics that is currently seeing dramatic solutions to long-standing open problems, and is proving itself of increasing importance across many other mathematical disciplines. The origins of the subject date back to work of Henri Poincaré and Heinz Hopf in the early 20th century, but it has seen enormous progress in the 21st century. A highlight of this volume is an introduction to and diverse applications of the newly established foundational theory of ¥ -categories. The coverage is vast, ranging from axiomatic to applied, from foundational to computational, and includes surveys of applications both geometric and algebraic. The contributors are among the most active and creative researchers in the field. The 22 chapters by 31 contributors are designed to address novices, as well as established mathematicians, interested in learning the state of the art in this field, whose methods are of increasing importance in many other areas.
Publisher: CRC Press
ISBN: 1351251600
Category : Mathematics
Languages : en
Pages : 1142
Book Description
The Handbook of Homotopy Theory provides a panoramic view of an active area in mathematics that is currently seeing dramatic solutions to long-standing open problems, and is proving itself of increasing importance across many other mathematical disciplines. The origins of the subject date back to work of Henri Poincaré and Heinz Hopf in the early 20th century, but it has seen enormous progress in the 21st century. A highlight of this volume is an introduction to and diverse applications of the newly established foundational theory of ¥ -categories. The coverage is vast, ranging from axiomatic to applied, from foundational to computational, and includes surveys of applications both geometric and algebraic. The contributors are among the most active and creative researchers in the field. The 22 chapters by 31 contributors are designed to address novices, as well as established mathematicians, interested in learning the state of the art in this field, whose methods are of increasing importance in many other areas.
Categorical Homotopy Theory
Author: Emily Riehl
Publisher: Cambridge University Press
ISBN: 1107048451
Category : Mathematics
Languages : en
Pages : 371
Book Description
This categorical perspective on homotopy theory helps consolidate and simplify one's understanding of derived functors, homotopy limits and colimits, and model categories, among others.
Publisher: Cambridge University Press
ISBN: 1107048451
Category : Mathematics
Languages : en
Pages : 371
Book Description
This categorical perspective on homotopy theory helps consolidate and simplify one's understanding of derived functors, homotopy limits and colimits, and model categories, among others.
Global Homotopy Theory
Author: Stefan Schwede
Publisher: Cambridge University Press
ISBN: 1108593658
Category : Mathematics
Languages : en
Pages : 848
Book Description
Equivariant homotopy theory started from geometrically motivated questions about symmetries of manifolds. Several important equivariant phenomena occur not just for a particular group, but in a uniform way for all groups. Prominent examples include stable homotopy, K-theory or bordism. Global equivariant homotopy theory studies such uniform phenomena, i.e. universal symmetries encoded by simultaneous and compatible actions of all compact Lie groups. This book introduces graduate students and researchers to global equivariant homotopy theory. The framework is based on the new notion of global equivalences for orthogonal spectra, a much finer notion of equivalence than is traditionally considered. The treatment is largely self-contained and contains many examples, making it suitable as a textbook for an advanced graduate class. At the same time, the book is a comprehensive research monograph with detailed calculations that reveal the intrinsic beauty of global equivariant phenomena.
Publisher: Cambridge University Press
ISBN: 1108593658
Category : Mathematics
Languages : en
Pages : 848
Book Description
Equivariant homotopy theory started from geometrically motivated questions about symmetries of manifolds. Several important equivariant phenomena occur not just for a particular group, but in a uniform way for all groups. Prominent examples include stable homotopy, K-theory or bordism. Global equivariant homotopy theory studies such uniform phenomena, i.e. universal symmetries encoded by simultaneous and compatible actions of all compact Lie groups. This book introduces graduate students and researchers to global equivariant homotopy theory. The framework is based on the new notion of global equivalences for orthogonal spectra, a much finer notion of equivalence than is traditionally considered. The treatment is largely self-contained and contains many examples, making it suitable as a textbook for an advanced graduate class. At the same time, the book is a comprehensive research monograph with detailed calculations that reveal the intrinsic beauty of global equivariant phenomena.
Equivariant Ordinary Homology and Cohomology
Author: Steven R. Costenoble
Publisher: Springer
ISBN: 3319504487
Category : Mathematics
Languages : en
Pages : 308
Book Description
Filling a gap in the literature, this book takes the reader to the frontiers of equivariant topology, the study of objects with specified symmetries. The discussion is motivated by reference to a list of instructive “toy” examples and calculations in what is a relatively unexplored field. The authors also provide a reading path for the first-time reader less interested in working through sophisticated machinery but still desiring a rigorous understanding of the main concepts. The subject’s classical counterparts, ordinary homology and cohomology, dating back to the work of Henri Poincaré in topology, are calculational and theoretical tools which are important in many parts of mathematics and theoretical physics, particularly in the study of manifolds. Similarly powerful tools have been lacking, however, in the context of equivariant topology. Aimed at advanced graduate students and researchers in algebraic topology and related fields, the book assumes knowledge of basic algebraic topology and group actions.
Publisher: Springer
ISBN: 3319504487
Category : Mathematics
Languages : en
Pages : 308
Book Description
Filling a gap in the literature, this book takes the reader to the frontiers of equivariant topology, the study of objects with specified symmetries. The discussion is motivated by reference to a list of instructive “toy” examples and calculations in what is a relatively unexplored field. The authors also provide a reading path for the first-time reader less interested in working through sophisticated machinery but still desiring a rigorous understanding of the main concepts. The subject’s classical counterparts, ordinary homology and cohomology, dating back to the work of Henri Poincaré in topology, are calculational and theoretical tools which are important in many parts of mathematics and theoretical physics, particularly in the study of manifolds. Similarly powerful tools have been lacking, however, in the context of equivariant topology. Aimed at advanced graduate students and researchers in algebraic topology and related fields, the book assumes knowledge of basic algebraic topology and group actions.
Global Homotopy Theory
Author: Stefan Schwede
Publisher: Cambridge University Press
ISBN: 110842581X
Category : Mathematics
Languages : en
Pages : 847
Book Description
A comprehensive, self-contained approach to global equivariant homotopy theory, with many detailed examples and sample calculations.
Publisher: Cambridge University Press
ISBN: 110842581X
Category : Mathematics
Languages : en
Pages : 847
Book Description
A comprehensive, self-contained approach to global equivariant homotopy theory, with many detailed examples and sample calculations.
Motivic Homotopy Theory
Author: Bjorn Ian Dundas
Publisher: Springer Science & Business Media
ISBN: 3540458972
Category : Mathematics
Languages : en
Pages : 228
Book Description
This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Aimed at graduate students in algebraic topology and algebraic geometry, it contains background material from both of these fields, as well as the foundations of motivic homotopy theory. It will serve as a good introduction as well as a convenient reference for a broad group of mathematicians to this important and fascinating new subject. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work, and the other authors have all done important work in the subject.
Publisher: Springer Science & Business Media
ISBN: 3540458972
Category : Mathematics
Languages : en
Pages : 228
Book Description
This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Aimed at graduate students in algebraic topology and algebraic geometry, it contains background material from both of these fields, as well as the foundations of motivic homotopy theory. It will serve as a good introduction as well as a convenient reference for a broad group of mathematicians to this important and fascinating new subject. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work, and the other authors have all done important work in the subject.
Elements of ∞-Category Theory
Author: Emily Riehl
Publisher: Cambridge University Press
ISBN: 1108952194
Category : Mathematics
Languages : en
Pages : 782
Book Description
The language of ∞-categories provides an insightful new way of expressing many results in higher-dimensional mathematics but can be challenging for the uninitiated. To explain what exactly an ∞-category is requires various technical models, raising the question of how they might be compared. To overcome this, a model-independent approach is desired, so that theorems proven with any model would apply to them all. This text develops the theory of ∞-categories from first principles in a model-independent fashion using the axiomatic framework of an ∞-cosmos, the universe in which ∞-categories live as objects. An ∞-cosmos is a fertile setting for the formal category theory of ∞-categories, and in this way the foundational proofs in ∞-category theory closely resemble the classical foundations of ordinary category theory. Equipped with exercises and appendices with background material, this first introduction is meant for students and researchers who have a strong foundation in classical 1-category theory.
Publisher: Cambridge University Press
ISBN: 1108952194
Category : Mathematics
Languages : en
Pages : 782
Book Description
The language of ∞-categories provides an insightful new way of expressing many results in higher-dimensional mathematics but can be challenging for the uninitiated. To explain what exactly an ∞-category is requires various technical models, raising the question of how they might be compared. To overcome this, a model-independent approach is desired, so that theorems proven with any model would apply to them all. This text develops the theory of ∞-categories from first principles in a model-independent fashion using the axiomatic framework of an ∞-cosmos, the universe in which ∞-categories live as objects. An ∞-cosmos is a fertile setting for the formal category theory of ∞-categories, and in this way the foundational proofs in ∞-category theory closely resemble the classical foundations of ordinary category theory. Equipped with exercises and appendices with background material, this first introduction is meant for students and researchers who have a strong foundation in classical 1-category theory.
Homotopy Type Theory: Univalent Foundations of Mathematics
Author:
Publisher: Univalent Foundations
ISBN:
Category :
Languages : en
Pages : 484
Book Description
Publisher: Univalent Foundations
ISBN:
Category :
Languages : en
Pages : 484
Book Description