Parametric Study on Soil-Structure Interaction Mechanisms Through A Three Dimensional Finite Element Numerical Modelling of Palladium Drive Integral Abutment Bridge in Ontario

Parametric Study on Soil-Structure Interaction Mechanisms Through A Three Dimensional Finite Element Numerical Modelling of Palladium Drive Integral Abutment Bridge in Ontario PDF Author: Yoon-Gi Min
Publisher:
ISBN:
Category :
Languages : en
Pages : 249

Get Book Here

Book Description
The term "Integral Abutment Bridges" is used broadly all over the world these days. While the expansion joints used in bridges were once a scientifically proved cure to the problem of natural expansion and contraction, there are the excessive maintenance costs being accumulated annually due to the deterioration of essential functions from deicing chemicals and debris. This drawback triggered the advent of Integral Abutment Bridges. The performance of Integral Abutment Bridges at almost no extra costs in seasonal and daily cyclic contraction and expansion can be assessed as a monumental landmark of civil engineering technologies with respect to the massive budget reductions. However, since Integral Abutment Bridges are destined to expand or contract under the laws of nature, the bridge design became more complicated and sophisticated in order to complement the removal of expansion joints. That is why numerous researchers are attracted to Integral Abutment Bridges with deep interests. Accordingly, in designing the piled abutments of Integral bridges, it is essential to precisely predict the bridge's behavior in advance. Researchers have been broadly carried out during the last several decades on the behavior of piled bridge abutments. However, most of the studies have been analyzed with focus on structural elements or soils, respectively for the static and dynamic loads such as thermal variations and earthquake loads. This presented research developed 3D numerical models with 3 m, 4 m, 5 m, 6 m, 7 m, and 8 m-tall abutments in the bridge using the finite element analysis software MIDAS CIVIL that simulate the behaviors of Integral Abutment Bridges to study the soil-structure interaction mechanism. In addition, this work evaluated and validated the suitability to the limit of the abutment height in Ontario's recommendations for Integral Abutment Bridges by a parametric study under the combined static loading conditions. In order to be a balanced research in terms of a multidisciplinary study, this research analyzed key facts and issues related to soil-structure interaction mechanisms with both structural and geotechnical concerns. Moreover, the study established an explanatory diagram on soil-structure interaction mechanisms by cyclic thermal movements in Integral Abutment Bridges.

Modelling of Soil-Structure Interaction

Modelling of Soil-Structure Interaction PDF Author: V. Kolár
Publisher: Elsevier
ISBN: 0444598987
Category : Technology & Engineering
Languages : en
Pages : 334

Get Book Here

Book Description
Distributed in the East European countries, China, Northern Korea, Cuba, Vietnam and Mongolia by Academia, Prague, CzechoslovakiaThis book is based on the efficient subsoil model introduced by the authors in 1977 and applied in the last ten years in the design of foundations. From the designer's point of view, the model considerably reduces the extent of the calculations connected with the numerical analysis of soil-structure interaction. The algorithms presented are geared for use on mini- and personal computers and can be used in any numerical method. A special chapter is devoted to the implementation of the model in the NE-XX finite element program package, illustrated with diagrams, tables and practical examples.Besides presenting the energy definition and general theory of both 2D and 3D model forms, the book also deals with practical problems such as Kirchhoff's and Mindlin's foundation plates, interaction between neighbouring structures, actual values of physical constants of subsoils and natural frequencies and shapes of foundation plates.Today, researchers and engineers can choose from a wide range of soil models, some fairly simple and others very elaborate. However, the gap which has long existed between geomechanical theory and everyday design practice still persists. The present book is intended to suit the practical needs of the designer by introducing an efficient subsoil model in which the surrounding soil is substituted by certain properties of the structure-soil interface. When a more precise solution is required, a more sophisticated model form can be used. Its additional degrees of deformation freedom can better express the behaviour of layered or generally unhomogeneous subsoil. As a result, designers will find that this book goes some way towards bridging the above-mentioned gap between structural design theory and day-to-day practice.

Three-Dimensional Modeling of Ground-Pile Systems and Bridge Foundations

Three-Dimensional Modeling of Ground-Pile Systems and Bridge Foundations PDF Author: Ning Wang
Publisher:
ISBN: 9781321649284
Category :
Languages : en
Pages : 348

Get Book Here

Book Description
Continued advancements in high-speed computing and increased availability of earthquake strong motion data have been allowing for further progress in the area of soil-structure-interaction (SSI). Efforts in this dissertation are mainly concerned with three-dimensional (3D) computational analyses of pile foundations and bridge-foundation-ground systems. This includes Finite Element (FE) modeling of ground-pile foundation systems, documentation and assessment of recorded bridge strong motion data, and identification of dynamic bridge-foundation system characteristics. Currently, simplified approaches, such as p-y curves or the foundation stiffness matrix representation, are employed mainly when considering Soil-Structure-Interaction. However, there is much interest in more representative modeling techniques in order to improve our assessments of seismic pile foundation response. In an effort to address this challenge, 3D FE numerical investigations are conducted related to the response of piles and pile groups under lateral load. Distribution of loads and moments among the piles within the group is investigated. Effects of permeability and loading rate on lateral pile response are addressed for saturated relatively impervious cohesionless soil condition. Insights concerning the soil-pile interaction mechanisms are obtained based on the conducted analyses of the soil-pile foundation subsystems. Furthermore, numerical studies are conducted of long-span highway bridge-foundation systems under seismic loading conditions. Three-dimensional FE models of two existing bridges at Eureka California (the Samoa Channel Bridge and the Eureka Channel Bridge) are developed. Methodologies combining numerical modeling with insights gained from strong motion sensor records are investigated to capture the essential structure-foundation-ground system-response mechanisms. Focus is placed on the evaluation of dynamic properties and validation of the bridge FE models based on the recorded earthquake response. An optimization tool (SNOPT) is employed to evaluate the bridge foundation lateral stiffness. The studies show that computational modeling, along with analysis of the recorded ground-pile foundation data, provide an effective mechanism for understanding the entire structure-foundation-ground system response. The OpenSees platform and the user-interfaces OpenSeesPL, MSBridge, as well as SNOPT are employed in various sections of the study. In the domain of highly expensive and time consuming foundation design and/or retrofit, major beneficial outcomes can result from adoption of analysis tools which have been calibrated/verified by actual recorded seismic performance data sets.

Soil-Structure Interaction: Numerical Analysis and Modelling

Soil-Structure Interaction: Numerical Analysis and Modelling PDF Author: J.W. Bull
Publisher: CRC Press
ISBN: 1482271397
Category : Architecture
Languages : en
Pages : 742

Get Book Here

Book Description
This book describes how a number of different methods of analysis and modelling, including the boundary element method, the finite element method, and a range of classical methods, are used to answer some of the questions associated with soil-structure interaction.

Modeling of the Soil-structure Interaction:

Modeling of the Soil-structure Interaction: PDF Author: Todor Zhelyazov
Publisher:
ISBN: 9781536176841
Category : Technology & Engineering
Languages : en
Pages : 168

Get Book Here

Book Description
This edited book provides discussion and presents results related to some "hot topics," all dealing with the soil-structure interaction. The book can be of interest to both scientists involved in academic studies of the problems addressed and for practitioners engaged in high-level design.Chapter I reports the investigation of non-stationary wave propagation in continuously inhomogeneous cylindrical elements (such as pipelines). New results obtained by numerical analysis of non-stationary wave propagation are presented. The cases studied comprise simulations of the propagations of both one-dimensional and two-dimensional non-stationary waves. Waves of the first type are supposed to propagate in continuously inhomogeneous, linearly viscoelastic cylinders, whereas waves of the second type propagate in continuously inhomogeneous elastic cylinders. The authors of this chapter apply an original research method consisting of the implementation of solutions to dynamic problems in the study of elastic and linearly viscoelastic piecewise homogeneous bodies.Chapter II outlines an analytical study of the propagation of different types of waves (plane, cylindrical, spherical) as well as of the waves' interaction with an element of Vibro-isolation (specifically, a three-layer plate). The author also presents the numerical results of the study of the distribution of the vibration accelerations in soil.Chapter III presents details on the analytical modeling of a bearing device for passive seismic isolation (friction-pendulum system). The behavior of the slider is identical to a motion of a particle constrained to slide on a spherical surface. The analytical model includes equations of motion, derived using the Lagrange formalism and constitutive equations of the sliding interface. The author presents the results of the numerical simulation of the response of the bearing device to a seismic event, assuming a constant value of the friction coefficient.Chapter IV proposes a discussion on the assessment of the load-carrying capacity of a metal-resin anchor and the determination of dependencies between parameters of supporting systems that include anchors. The solution to the problems addressed in this study involves an accurate analysis of the load transfer mechanisms between different system components. The proposed strategy requires the implementation of an algorithm aimed at the reconstruction of the analytical form of a function, provided its tabular form is available. The authors also formulate a theorem that postulates the existence of such representation applicable in a more general context.The research object in Chapter V is the formulation of the boundary value problems for circular and annular three-layer plates subjected to axisymmetric loading. The considered plates consist of three layers: two thin bearing layers and one filler layer, with a perfect bond, assumed for all interfaces. The definition of the stress-strain state in the plates presumes that the Kirchhoff's hypotheses regarding the bearing layers and the Timoshenko's hypothesis (i.e., linear distribution of the tangential displacements over the thickness) concerning the filler layer hold. The performed analyses take into account the characteristics of the elastic (Winkler) foundation. The authors provide the obtained analytical solutions to the formulated boundary value problems. Results obtained by numerical analysis of the stress and the strain distributions for plates supported by hinges on the contour are also presented.

Soil-Machine Interactions

Soil-Machine Interactions PDF Author: Shen
Publisher: Routledge
ISBN: 1351415662
Category : Technology & Engineering
Languages : en
Pages : 360

Get Book Here

Book Description
Aiming to improve work efficiency in such areas as tillage in agriculture, earth-moving in civil engineering, and tunnel-making in sea-bed operations, this work offers an introduction to Finite Element Method (FEM) analysis of soil-machine systems. It explains the advantage of FEM's numerical approach over traditional analytical and empirical methods of dealing with complex factors from nonlinear mechanical behaviour to geometric configurations.

Soil-Machine Interactions

Soil-Machine Interactions PDF Author: Shen
Publisher: CRC Press
ISBN: 9780824700812
Category : Technology & Engineering
Languages : en
Pages : 360

Get Book Here

Book Description
Aiming to improve work efficiency in such areas as tillage in agriculture, earth-moving in civil engineering, and tunnel-making in sea-bed operations, this work offers an introduction to Finite Element Method (FEM) analysis of soil-machine systems. It explains the advantage of FEM's numerical approach over traditional analytical and empirical methods of dealing with complex factors from nonlinear mechanical behaviour to geometric configurations.

Nonlinear Soil-structure Interaction Analysis of One-, Two-, and Three- Dimensional Problems Using Finite Element Method

Nonlinear Soil-structure Interaction Analysis of One-, Two-, and Three- Dimensional Problems Using Finite Element Method PDF Author: Hema Jayalath Siriwardane
Publisher:
ISBN:
Category : Finite element method
Languages : en
Pages : 337

Get Book Here

Book Description


Finite Element Procedure and Code for Three-dimensional Soil-structure Interaction

Finite Element Procedure and Code for Three-dimensional Soil-structure Interaction PDF Author: Chandrakant S. Desai
Publisher:
ISBN:
Category : Finite element method
Languages : en
Pages : 48

Get Book Here

Book Description


Soil-structure Interaction Studies for Understanding the Behavior of Integral Abutment Bridges

Soil-structure Interaction Studies for Understanding the Behavior of Integral Abutment Bridges PDF Author: Karrthik Kirupakaran
Publisher:
ISBN:
Category : Bridges
Languages : en
Pages : 384

Get Book Here

Book Description