Author: Jürgen Guddat
Publisher:
ISBN:
Category : Mathematical optimization
Languages : en
Pages : 412
Book Description
Parametric Optimization and Related Topics
Author: Jürgen Guddat
Publisher:
ISBN:
Category : Mathematical optimization
Languages : en
Pages : 412
Book Description
Publisher:
ISBN:
Category : Mathematical optimization
Languages : en
Pages : 412
Book Description
Parametric Optimization and Related Topics
Author:
Publisher:
ISBN:
Category : Mathematical optimization
Languages : en
Pages : 184
Book Description
Publisher:
ISBN:
Category : Mathematical optimization
Languages : en
Pages : 184
Book Description
Simulation-Based Optimization
Author: Abhijit Gosavi
Publisher: Springer
ISBN: 1489974911
Category : Business & Economics
Languages : en
Pages : 530
Book Description
Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduce the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques – especially designed for those discrete-event, stochastic systems which can be simulated but whose analytical models are difficult to find in closed mathematical forms. Key features of this revised and improved Second Edition include: · Extensive coverage, via step-by-step recipes, of powerful new algorithms for static simulation optimization, including simultaneous perturbation, backtracking adaptive search and nested partitions, in addition to traditional methods, such as response surfaces, Nelder-Mead search and meta-heuristics (simulated annealing, tabu search, and genetic algorithms) · Detailed coverage of the Bellman equation framework for Markov Decision Processes (MDPs), along with dynamic programming (value and policy iteration) for discounted, average, and total reward performance metrics · An in-depth consideration of dynamic simulation optimization via temporal differences and Reinforcement Learning: Q-Learning, SARSA, and R-SMART algorithms, and policy search, via API, Q-P-Learning, actor-critics, and learning automata · A special examination of neural-network-based function approximation for Reinforcement Learning, semi-Markov decision processes (SMDPs), finite-horizon problems, two time scales, case studies for industrial tasks, computer codes (placed online) and convergence proofs, via Banach fixed point theory and Ordinary Differential Equations Themed around three areas in separate sets of chapters – Static Simulation Optimization, Reinforcement Learning and Convergence Analysis – this book is written for researchers and students in the fields of engineering (industrial, systems, electrical and computer), operations research, computer science and applied mathematics.
Publisher: Springer
ISBN: 1489974911
Category : Business & Economics
Languages : en
Pages : 530
Book Description
Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduce the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques – especially designed for those discrete-event, stochastic systems which can be simulated but whose analytical models are difficult to find in closed mathematical forms. Key features of this revised and improved Second Edition include: · Extensive coverage, via step-by-step recipes, of powerful new algorithms for static simulation optimization, including simultaneous perturbation, backtracking adaptive search and nested partitions, in addition to traditional methods, such as response surfaces, Nelder-Mead search and meta-heuristics (simulated annealing, tabu search, and genetic algorithms) · Detailed coverage of the Bellman equation framework for Markov Decision Processes (MDPs), along with dynamic programming (value and policy iteration) for discounted, average, and total reward performance metrics · An in-depth consideration of dynamic simulation optimization via temporal differences and Reinforcement Learning: Q-Learning, SARSA, and R-SMART algorithms, and policy search, via API, Q-P-Learning, actor-critics, and learning automata · A special examination of neural-network-based function approximation for Reinforcement Learning, semi-Markov decision processes (SMDPs), finite-horizon problems, two time scales, case studies for industrial tasks, computer codes (placed online) and convergence proofs, via Banach fixed point theory and Ordinary Differential Equations Themed around three areas in separate sets of chapters – Static Simulation Optimization, Reinforcement Learning and Convergence Analysis – this book is written for researchers and students in the fields of engineering (industrial, systems, electrical and computer), operations research, computer science and applied mathematics.
Optimization and Related Topics
Author: Alexander M. Rubinov
Publisher: Springer Science & Business Media
ISBN: 147576099X
Category : Computers
Languages : en
Pages : 466
Book Description
This volume contains, in part, a selection of papers presented at the sixth Australian Optimization Day Miniconference (Ballarat, 16 July 1999), and the Special Sessions on Nonlinear Dynamics and Optimization and Operations Re search - Methods and Applications, which were held in Melbourne, July 11-15 1999 as a part of the Joint Meeting of the American Mathematical Society and Australian Mathematical Society. The editors have strived to present both con tributed papers and survey style papers as a more interesting mix for readers. Some participants from the meetings mentioned above have responded to this approach by preparing survey and 'semi-survey' papers, based on presented lectures. Contributed paper, which contain new and interesting results, are also included. The fields of the presented papers are very large as demonstrated by the following selection of key words from selected papers in this volume: • optimal control, stochastic optimal control, MATLAB, economic models, implicit constraints, Bellman principle, Markov process, decision-making under uncertainty, risk aversion, dynamic programming, optimal value function. • emergent computation, complexity, traveling salesman problem, signal estimation, neural networks, time congestion, teletraffic. • gap functions, nonsmooth variational inequalities, derivative-free algo rithm, Newton's method. • auxiliary function, generalized penalty function, modified Lagrange func tion. • convexity, quasiconvexity, abstract convexity.
Publisher: Springer Science & Business Media
ISBN: 147576099X
Category : Computers
Languages : en
Pages : 466
Book Description
This volume contains, in part, a selection of papers presented at the sixth Australian Optimization Day Miniconference (Ballarat, 16 July 1999), and the Special Sessions on Nonlinear Dynamics and Optimization and Operations Re search - Methods and Applications, which were held in Melbourne, July 11-15 1999 as a part of the Joint Meeting of the American Mathematical Society and Australian Mathematical Society. The editors have strived to present both con tributed papers and survey style papers as a more interesting mix for readers. Some participants from the meetings mentioned above have responded to this approach by preparing survey and 'semi-survey' papers, based on presented lectures. Contributed paper, which contain new and interesting results, are also included. The fields of the presented papers are very large as demonstrated by the following selection of key words from selected papers in this volume: • optimal control, stochastic optimal control, MATLAB, economic models, implicit constraints, Bellman principle, Markov process, decision-making under uncertainty, risk aversion, dynamic programming, optimal value function. • emergent computation, complexity, traveling salesman problem, signal estimation, neural networks, time congestion, teletraffic. • gap functions, nonsmooth variational inequalities, derivative-free algo rithm, Newton's method. • auxiliary function, generalized penalty function, modified Lagrange func tion. • convexity, quasiconvexity, abstract convexity.
Multi-parametric Optimization and Control
Author: Efstratios N. Pistikopoulos
Publisher: John Wiley & Sons
ISBN: 1119265185
Category : Mathematics
Languages : en
Pages : 320
Book Description
Recent developments in multi-parametric optimization and control Multi-Parametric Optimization and Control provides comprehensive coverage of recent methodological developments for optimal model-based control through parametric optimization. It also shares real-world research applications to support deeper understanding of the material. Researchers and practitioners can use the book as reference. It is also suitable as a primary or a supplementary textbook. Each chapter looks at the theories related to a topic along with a relevant case study. Topic complexity increases gradually as readers progress through the chapters. The first part of the book presents an overview of the state-of-the-art multi-parametric optimization theory and algorithms in multi-parametric programming. The second examines the connection between multi-parametric programming and model-predictive control—from the linear quadratic regulator over hybrid systems to periodic systems and robust control. The third part of the book addresses multi-parametric optimization in process systems engineering. A step-by-step procedure is introduced for embedding the programming within the system engineering, which leads the reader into the topic of the PAROC framework and software platform. PAROC is an integrated framework and platform for the optimization and advanced model-based control of process systems. Uses case studies to illustrate real-world applications for a better understanding of the concepts presented Covers the fundamentals of optimization and model predictive control Provides information on key topics, such as the basic sensitivity theorem, linear programming, quadratic programming, mixed-integer linear programming, optimal control of continuous systems, and multi-parametric optimal control An appendix summarizes the history of multi-parametric optimization algorithms. It also covers the use of the parametric optimization toolbox (POP), which is comprehensive software for efficiently solving multi-parametric programming problems.
Publisher: John Wiley & Sons
ISBN: 1119265185
Category : Mathematics
Languages : en
Pages : 320
Book Description
Recent developments in multi-parametric optimization and control Multi-Parametric Optimization and Control provides comprehensive coverage of recent methodological developments for optimal model-based control through parametric optimization. It also shares real-world research applications to support deeper understanding of the material. Researchers and practitioners can use the book as reference. It is also suitable as a primary or a supplementary textbook. Each chapter looks at the theories related to a topic along with a relevant case study. Topic complexity increases gradually as readers progress through the chapters. The first part of the book presents an overview of the state-of-the-art multi-parametric optimization theory and algorithms in multi-parametric programming. The second examines the connection between multi-parametric programming and model-predictive control—from the linear quadratic regulator over hybrid systems to periodic systems and robust control. The third part of the book addresses multi-parametric optimization in process systems engineering. A step-by-step procedure is introduced for embedding the programming within the system engineering, which leads the reader into the topic of the PAROC framework and software platform. PAROC is an integrated framework and platform for the optimization and advanced model-based control of process systems. Uses case studies to illustrate real-world applications for a better understanding of the concepts presented Covers the fundamentals of optimization and model predictive control Provides information on key topics, such as the basic sensitivity theorem, linear programming, quadratic programming, mixed-integer linear programming, optimal control of continuous systems, and multi-parametric optimal control An appendix summarizes the history of multi-parametric optimization algorithms. It also covers the use of the parametric optimization toolbox (POP), which is comprehensive software for efficiently solving multi-parametric programming problems.
Postoptimal Analyses, Parametric Programming, and Related Topics
Author: Tomas Gal
Publisher: Walter de Gruyter
ISBN: 3110871203
Category : Computers
Languages : en
Pages : 465
Book Description
Postoptimal Analyses, Parametric Programming, and Related Topics: Degeneracy, Multicriteria Decision Making Redundancy.
Publisher: Walter de Gruyter
ISBN: 3110871203
Category : Computers
Languages : en
Pages : 465
Book Description
Postoptimal Analyses, Parametric Programming, and Related Topics: Degeneracy, Multicriteria Decision Making Redundancy.
Non-Linear Parametric Optimization
Author: BANK
Publisher: Birkhäuser
ISBN: 3034863284
Category : Science
Languages : en
Pages : 227
Book Description
Publisher: Birkhäuser
ISBN: 3034863284
Category : Science
Languages : en
Pages : 227
Book Description
Stable Parametric Programming
Author: S. Zlobec
Publisher: Springer Science & Business Media
ISBN: 1461500117
Category : Business & Economics
Languages : en
Pages : 329
Book Description
Optimality and stability are two important notions in applied mathematics. This book is a study of these notions and their relationship in linear and convex parametric programming models. It begins with a survey of basic optimality conditions in nonlinear programming. Then new results in convex programming, using LFS functions, for single-objective, multi-objective, differentiable and non-smooth programs are introduced. Parametric programming models are studied using basic tools of point-to-set topology. Stability of the models is introduced, essentially, as continuity of the feasible set of decision variables under continuous perturbations of the parameters. Perturbations that preserve this continuity are regions of stability. It is shown how these regions can be identified. The main results on stability are characterizations of locally and globally optimal parameters for stable and also for unstable perturbations. The results are straightened for linear models and bi-level programs. Some of the results are extended to abstract spaces after considering parameters as `controls'. Illustrations from diverse fields, such as data envelopment analysis, management, von Stackelberg games of market economy, and navigation problems are given and several case studies are solved by finding optimal parameters. The book has been written in an analytic spirit. Many results appear here for the first time in book form. Audience: The book is written at the level of a first-year graduate course in optimization for students with varied backgrounds interested in modeling of real-life problems. It is expected that the reader has been exposed to a prior elementary course in optimization, such as linear or non-linear programming. The last section of the book requires some knowledge of functional analysis.
Publisher: Springer Science & Business Media
ISBN: 1461500117
Category : Business & Economics
Languages : en
Pages : 329
Book Description
Optimality and stability are two important notions in applied mathematics. This book is a study of these notions and their relationship in linear and convex parametric programming models. It begins with a survey of basic optimality conditions in nonlinear programming. Then new results in convex programming, using LFS functions, for single-objective, multi-objective, differentiable and non-smooth programs are introduced. Parametric programming models are studied using basic tools of point-to-set topology. Stability of the models is introduced, essentially, as continuity of the feasible set of decision variables under continuous perturbations of the parameters. Perturbations that preserve this continuity are regions of stability. It is shown how these regions can be identified. The main results on stability are characterizations of locally and globally optimal parameters for stable and also for unstable perturbations. The results are straightened for linear models and bi-level programs. Some of the results are extended to abstract spaces after considering parameters as `controls'. Illustrations from diverse fields, such as data envelopment analysis, management, von Stackelberg games of market economy, and navigation problems are given and several case studies are solved by finding optimal parameters. The book has been written in an analytic spirit. Many results appear here for the first time in book form. Audience: The book is written at the level of a first-year graduate course in optimization for students with varied backgrounds interested in modeling of real-life problems. It is expected that the reader has been exposed to a prior elementary course in optimization, such as linear or non-linear programming. The last section of the book requires some knowledge of functional analysis.
Acta Numerica 1993: Volume 2
Author: Arieh Iserles
Publisher: Cambridge University Press
ISBN: 9780521443562
Category : Mathematics
Languages : en
Pages : 344
Book Description
Continuing the tradition established with the 1992 volume, this 1993's Acta Numerica presents six invited papers on a broad range of topics from numerical analysis. Papers treat each topic at a level intelligible by any numerical analyst from graduate student to professional.
Publisher: Cambridge University Press
ISBN: 9780521443562
Category : Mathematics
Languages : en
Pages : 344
Book Description
Continuing the tradition established with the 1992 volume, this 1993's Acta Numerica presents six invited papers on a broad range of topics from numerical analysis. Papers treat each topic at a level intelligible by any numerical analyst from graduate student to professional.
Optimization Theory
Author: Hubertus Th. Jongen
Publisher: Springer Science & Business Media
ISBN: 1402080999
Category : Mathematics
Languages : en
Pages : 436
Book Description
This volume provides a comprehensive introduction to the theory of (deterministic) optimization. It covers both continuous and discrete optimization. This allows readers to study problems under different points-of-view, which supports a better understanding of the entire field. Many exercises are included to increase the reader's understanding.
Publisher: Springer Science & Business Media
ISBN: 1402080999
Category : Mathematics
Languages : en
Pages : 436
Book Description
This volume provides a comprehensive introduction to the theory of (deterministic) optimization. It covers both continuous and discrete optimization. This allows readers to study problems under different points-of-view, which supports a better understanding of the entire field. Many exercises are included to increase the reader's understanding.