Author: Jens Vygen
Publisher: Springer Nature
ISBN: 3031598350
Category :
Languages : en
Pages : 474
Book Description
Integer Programming and Combinatorial Optimization
Author: Jens Vygen
Publisher: Springer Nature
ISBN: 3031598350
Category :
Languages : en
Pages : 474
Book Description
Publisher: Springer Nature
ISBN: 3031598350
Category :
Languages : en
Pages : 474
Book Description
A Tutorial on Thompson Sampling
Author: Daniel J. Russo
Publisher:
ISBN: 9781680834710
Category : Electronic books
Languages : en
Pages :
Book Description
The objective of this tutorial is to explain when, why, and how to apply Thompson sampling.
Publisher:
ISBN: 9781680834710
Category : Electronic books
Languages : en
Pages :
Book Description
The objective of this tutorial is to explain when, why, and how to apply Thompson sampling.
Algorithms for Convex Optimization
Author: Nisheeth K. Vishnoi
Publisher: Cambridge University Press
ISBN: 1108633994
Category : Computers
Languages : en
Pages : 314
Book Description
In the last few years, Algorithms for Convex Optimization have revolutionized algorithm design, both for discrete and continuous optimization problems. For problems like maximum flow, maximum matching, and submodular function minimization, the fastest algorithms involve essential methods such as gradient descent, mirror descent, interior point methods, and ellipsoid methods. The goal of this self-contained book is to enable researchers and professionals in computer science, data science, and machine learning to gain an in-depth understanding of these algorithms. The text emphasizes how to derive key algorithms for convex optimization from first principles and how to establish precise running time bounds. This modern text explains the success of these algorithms in problems of discrete optimization, as well as how these methods have significantly pushed the state of the art of convex optimization itself.
Publisher: Cambridge University Press
ISBN: 1108633994
Category : Computers
Languages : en
Pages : 314
Book Description
In the last few years, Algorithms for Convex Optimization have revolutionized algorithm design, both for discrete and continuous optimization problems. For problems like maximum flow, maximum matching, and submodular function minimization, the fastest algorithms involve essential methods such as gradient descent, mirror descent, interior point methods, and ellipsoid methods. The goal of this self-contained book is to enable researchers and professionals in computer science, data science, and machine learning to gain an in-depth understanding of these algorithms. The text emphasizes how to derive key algorithms for convex optimization from first principles and how to establish precise running time bounds. This modern text explains the success of these algorithms in problems of discrete optimization, as well as how these methods have significantly pushed the state of the art of convex optimization itself.
Dynamic Economics
Author: Jerome Adda
Publisher: MIT Press
ISBN: 0262547880
Category : Business & Economics
Languages : en
Pages : 297
Book Description
An integrated approach to the empirical application of dynamic optimization programming models, for students and researchers. This book is an effective, concise text for students and researchers that combines the tools of dynamic programming with numerical techniques and simulation-based econometric methods. Doing so, it bridges the traditional gap between theoretical and empirical research and offers an integrated framework for studying applied problems in macroeconomics and microeconomics. In part I the authors first review the formal theory of dynamic optimization; they then present the numerical tools and econometric techniques necessary to evaluate the theoretical models. In language accessible to a reader with a limited background in econometrics, they explain most of the methods used in applied dynamic research today, from the estimation of probability in a coin flip to a complicated nonlinear stochastic structural model. These econometric techniques provide the final link between the dynamic programming problem and data. Part II is devoted to the application of dynamic programming to specific areas of applied economics, including the study of business cycles, consumption, and investment behavior. In each instance the authors present the specific optimization problem as a dynamic programming problem, characterize the optimal policy functions, estimate the parameters, and use models for policy evaluation. The original contribution of Dynamic Economics: Quantitative Methods and Applications lies in the integrated approach to the empirical application of dynamic optimization programming models. This integration shows that empirical applications actually complement the underlying theory of optimization, while dynamic programming problems provide needed structure for estimation and policy evaluation.
Publisher: MIT Press
ISBN: 0262547880
Category : Business & Economics
Languages : en
Pages : 297
Book Description
An integrated approach to the empirical application of dynamic optimization programming models, for students and researchers. This book is an effective, concise text for students and researchers that combines the tools of dynamic programming with numerical techniques and simulation-based econometric methods. Doing so, it bridges the traditional gap between theoretical and empirical research and offers an integrated framework for studying applied problems in macroeconomics and microeconomics. In part I the authors first review the formal theory of dynamic optimization; they then present the numerical tools and econometric techniques necessary to evaluate the theoretical models. In language accessible to a reader with a limited background in econometrics, they explain most of the methods used in applied dynamic research today, from the estimation of probability in a coin flip to a complicated nonlinear stochastic structural model. These econometric techniques provide the final link between the dynamic programming problem and data. Part II is devoted to the application of dynamic programming to specific areas of applied economics, including the study of business cycles, consumption, and investment behavior. In each instance the authors present the specific optimization problem as a dynamic programming problem, characterize the optimal policy functions, estimate the parameters, and use models for policy evaluation. The original contribution of Dynamic Economics: Quantitative Methods and Applications lies in the integrated approach to the empirical application of dynamic optimization programming models. This integration shows that empirical applications actually complement the underlying theory of optimization, while dynamic programming problems provide needed structure for estimation and policy evaluation.
Genetic Algorithms in Search, Optimization, and Machine Learning
Author: David Edward Goldberg
Publisher: Addison-Wesley Professional
ISBN:
Category : Computers
Languages : en
Pages : 436
Book Description
A gentle introduction to genetic algorithms. Genetic algorithms revisited: mathematical foundations. Computer implementation of a genetic algorithm. Some applications of genetic algorithms. Advanced operators and techniques in genetic search. Introduction to genetics-based machine learning. Applications of genetics-based machine learning. A look back, a glance ahead. A review of combinatorics and elementary probability. Pascal with random number generation for fortran, basic, and cobol programmers. A simple genetic algorithm (SGA) in pascal. A simple classifier system(SCS) in pascal. Partition coefficient transforms for problem-coding analysis.
Publisher: Addison-Wesley Professional
ISBN:
Category : Computers
Languages : en
Pages : 436
Book Description
A gentle introduction to genetic algorithms. Genetic algorithms revisited: mathematical foundations. Computer implementation of a genetic algorithm. Some applications of genetic algorithms. Advanced operators and techniques in genetic search. Introduction to genetics-based machine learning. Applications of genetics-based machine learning. A look back, a glance ahead. A review of combinatorics and elementary probability. Pascal with random number generation for fortran, basic, and cobol programmers. A simple genetic algorithm (SGA) in pascal. A simple classifier system(SCS) in pascal. Partition coefficient transforms for problem-coding analysis.
Tuning, Timbre, Spectrum, Scale
Author: William A. Sethares
Publisher: Springer Science & Business Media
ISBN: 1447141776
Category : Music
Languages : en
Pages : 346
Book Description
Tuning, Timbre, Spectrum, Scale focuses on perceptions of consonance and dissonance, and how these are dependent on timbre. This also relates to musical scale: certain timbres sound more consonant in some scales than others. Sensory consonance and the ability to measure it have important implications for the design of audio devices and for musical theory and analysis. Applications include methods of adapting sounds for arbitrary scales, ways to specify scales for nonharmonic sounds, and techniques of sound manipulation based on maximizing (or minimizing) consonance. Special consideration is given here to a new method of adaptive tuning that can automatically adjust the tuning of a piece based its timbral character so as to minimize dissonance. Audio examples illustrating the ideas presented are provided on an accompanying CD. This unique analysis of sound and scale will be of interest to physicists and engineers working in acoustics, as well as to musicians and psychologists.
Publisher: Springer Science & Business Media
ISBN: 1447141776
Category : Music
Languages : en
Pages : 346
Book Description
Tuning, Timbre, Spectrum, Scale focuses on perceptions of consonance and dissonance, and how these are dependent on timbre. This also relates to musical scale: certain timbres sound more consonant in some scales than others. Sensory consonance and the ability to measure it have important implications for the design of audio devices and for musical theory and analysis. Applications include methods of adapting sounds for arbitrary scales, ways to specify scales for nonharmonic sounds, and techniques of sound manipulation based on maximizing (or minimizing) consonance. Special consideration is given here to a new method of adaptive tuning that can automatically adjust the tuning of a piece based its timbral character so as to minimize dissonance. Audio examples illustrating the ideas presented are provided on an accompanying CD. This unique analysis of sound and scale will be of interest to physicists and engineers working in acoustics, as well as to musicians and psychologists.
Handbook of Global Optimization
Author: Panos M. Pardalos
Publisher: Springer Science & Business Media
ISBN: 1475753624
Category : Mathematics
Languages : en
Pages : 571
Book Description
In 1995 the Handbook of Global Optimization (first volume), edited by R. Horst, and P.M. Pardalos, was published. This second volume of the Handbook of Global Optimization is comprised of chapters dealing with modern approaches to global optimization, including different types of heuristics. Topics covered in the handbook include various metaheuristics, such as simulated annealing, genetic algorithms, neural networks, taboo search, shake-and-bake methods, and deformation methods. In addition, the book contains chapters on new exact stochastic and deterministic approaches to continuous and mixed-integer global optimization, such as stochastic adaptive search, two-phase methods, branch-and-bound methods with new relaxation and branching strategies, algorithms based on local optimization, and dynamical search. Finally, the book contains chapters on experimental analysis of algorithms and software, test problems, and applications.
Publisher: Springer Science & Business Media
ISBN: 1475753624
Category : Mathematics
Languages : en
Pages : 571
Book Description
In 1995 the Handbook of Global Optimization (first volume), edited by R. Horst, and P.M. Pardalos, was published. This second volume of the Handbook of Global Optimization is comprised of chapters dealing with modern approaches to global optimization, including different types of heuristics. Topics covered in the handbook include various metaheuristics, such as simulated annealing, genetic algorithms, neural networks, taboo search, shake-and-bake methods, and deformation methods. In addition, the book contains chapters on new exact stochastic and deterministic approaches to continuous and mixed-integer global optimization, such as stochastic adaptive search, two-phase methods, branch-and-bound methods with new relaxation and branching strategies, algorithms based on local optimization, and dynamical search. Finally, the book contains chapters on experimental analysis of algorithms and software, test problems, and applications.
Robust Optimization
Author: Aharon Ben-Tal
Publisher: Princeton University Press
ISBN: 1400831059
Category : Mathematics
Languages : en
Pages : 565
Book Description
Robust optimization is still a relatively new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of the subject. Robust optimization is designed to meet some major challenges associated with uncertainty-affected optimization problems: to operate under lack of full information on the nature of uncertainty; to model the problem in a form that can be solved efficiently; and to provide guarantees about the performance of the solution. The book starts with a relatively simple treatment of uncertain linear programming, proceeding with a deep analysis of the interconnections between the construction of appropriate uncertainty sets and the classical chance constraints (probabilistic) approach. It then develops the robust optimization theory for uncertain conic quadratic and semidefinite optimization problems and dynamic (multistage) problems. The theory is supported by numerous examples and computational illustrations. An essential book for anyone working on optimization and decision making under uncertainty, Robust Optimization also makes an ideal graduate textbook on the subject.
Publisher: Princeton University Press
ISBN: 1400831059
Category : Mathematics
Languages : en
Pages : 565
Book Description
Robust optimization is still a relatively new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of the subject. Robust optimization is designed to meet some major challenges associated with uncertainty-affected optimization problems: to operate under lack of full information on the nature of uncertainty; to model the problem in a form that can be solved efficiently; and to provide guarantees about the performance of the solution. The book starts with a relatively simple treatment of uncertain linear programming, proceeding with a deep analysis of the interconnections between the construction of appropriate uncertainty sets and the classical chance constraints (probabilistic) approach. It then develops the robust optimization theory for uncertain conic quadratic and semidefinite optimization problems and dynamic (multistage) problems. The theory is supported by numerous examples and computational illustrations. An essential book for anyone working on optimization and decision making under uncertainty, Robust Optimization also makes an ideal graduate textbook on the subject.
The Mathematics of Medical Imaging
Author: Timothy G. Feeman
Publisher: Springer Science & Business Media
ISBN: 0387927115
Category : Computers
Languages : en
Pages : 150
Book Description
Medical imaging is a major part of twenty-first century health care. This introduction explores the mathematical aspects of imaging in medicine to explain approximation methods in addition to computer implementation of inversion algorithms.
Publisher: Springer Science & Business Media
ISBN: 0387927115
Category : Computers
Languages : en
Pages : 150
Book Description
Medical imaging is a major part of twenty-first century health care. This introduction explores the mathematical aspects of imaging in medicine to explain approximation methods in addition to computer implementation of inversion algorithms.
Representations and Techniques for 3D Object Recognition and Scene Interpretation
Author: Derek Hoiem
Publisher: Morgan & Claypool Publishers
ISBN: 1608457281
Category : Computers
Languages : en
Pages : 172
Book Description
One of the grand challenges of artificial intelligence is to enable computers to interpret 3D scenes and objects from imagery. This book organizes and introduces major concepts in 3D scene and object representation and inference from still images, with a focus on recent efforts to fuse models of geometry and perspective with statistical machine learning. The book is organized into three sections: (1) Interpretation of Physical Space; (2) Recognition of 3D Objects; and (3) Integrated 3D Scene Interpretation. The first discusses representations of spatial layout and techniques to interpret physical scenes from images. The second section introduces representations for 3D object categories that account for the intrinsically 3D nature of objects and provide robustness to change in viewpoints. The third section discusses strategies to unite inference of scene geometry and object pose and identity into a coherent scene interpretation. Each section broadly surveys important ideas from cognitive science and artificial intelligence research, organizes and discusses key concepts and techniques from recent work in computer vision, and describes a few sample approaches in detail. Newcomers to computer vision will benefit from introductions to basic concepts, such as single-view geometry and image classification, while experts and novices alike may find inspiration from the book's organization and discussion of the most recent ideas in 3D scene understanding and 3D object recognition. Specific topics include: mathematics of perspective geometry; visual elements of the physical scene, structural 3D scene representations; techniques and features for image and region categorization; historical perspective, computational models, and datasets and machine learning techniques for 3D object recognition; inferences of geometrical attributes of objects, such as size and pose; and probabilistic and feature-passing approaches for contextual reasoning about 3D objects and scenes. Table of Contents: Background on 3D Scene Models / Single-view Geometry / Modeling the Physical Scene / Categorizing Images and Regions / Examples of 3D Scene Interpretation / Background on 3D Recognition / Modeling 3D Objects / Recognizing and Understanding 3D Objects / Examples of 2D 1/2 Layout Models / Reasoning about Objects and Scenes / Cascades of Classifiers / Conclusion and Future Directions
Publisher: Morgan & Claypool Publishers
ISBN: 1608457281
Category : Computers
Languages : en
Pages : 172
Book Description
One of the grand challenges of artificial intelligence is to enable computers to interpret 3D scenes and objects from imagery. This book organizes and introduces major concepts in 3D scene and object representation and inference from still images, with a focus on recent efforts to fuse models of geometry and perspective with statistical machine learning. The book is organized into three sections: (1) Interpretation of Physical Space; (2) Recognition of 3D Objects; and (3) Integrated 3D Scene Interpretation. The first discusses representations of spatial layout and techniques to interpret physical scenes from images. The second section introduces representations for 3D object categories that account for the intrinsically 3D nature of objects and provide robustness to change in viewpoints. The third section discusses strategies to unite inference of scene geometry and object pose and identity into a coherent scene interpretation. Each section broadly surveys important ideas from cognitive science and artificial intelligence research, organizes and discusses key concepts and techniques from recent work in computer vision, and describes a few sample approaches in detail. Newcomers to computer vision will benefit from introductions to basic concepts, such as single-view geometry and image classification, while experts and novices alike may find inspiration from the book's organization and discussion of the most recent ideas in 3D scene understanding and 3D object recognition. Specific topics include: mathematics of perspective geometry; visual elements of the physical scene, structural 3D scene representations; techniques and features for image and region categorization; historical perspective, computational models, and datasets and machine learning techniques for 3D object recognition; inferences of geometrical attributes of objects, such as size and pose; and probabilistic and feature-passing approaches for contextual reasoning about 3D objects and scenes. Table of Contents: Background on 3D Scene Models / Single-view Geometry / Modeling the Physical Scene / Categorizing Images and Regions / Examples of 3D Scene Interpretation / Background on 3D Recognition / Modeling 3D Objects / Recognizing and Understanding 3D Objects / Examples of 2D 1/2 Layout Models / Reasoning about Objects and Scenes / Cascades of Classifiers / Conclusion and Future Directions