Author: Simonetta Longhi
Publisher: SAGE
ISBN: 1473911338
Category : Social Science
Languages : en
Pages : 528
Book Description
This timely, thoughtful book provides a clear introduction to using panel data in research. It describes the different types of panel datasets commonly used for empirical analysis, and how to use them for cross sectional, panel, and event history analysis. Longhi and Nandi then guide the reader through the data management and estimation process, including the interpretation of the results and the preparation of the final output tables. Using existing data sets and structured as hands-on exercises, each chapter engages with practical issues associated with using data in research. These include: Data cleaning Data preparation Computation of descriptive statistics Using sample weights Choosing and implementing the right estimator Interpreting results Preparing final output tables Graphical representation Written by experienced authors this exciting textbook provides the practical tools needed to use panel data in research.
A Practical Guide to Using Panel Data
Author: Simonetta Longhi
Publisher: SAGE
ISBN: 1473911338
Category : Social Science
Languages : en
Pages : 528
Book Description
This timely, thoughtful book provides a clear introduction to using panel data in research. It describes the different types of panel datasets commonly used for empirical analysis, and how to use them for cross sectional, panel, and event history analysis. Longhi and Nandi then guide the reader through the data management and estimation process, including the interpretation of the results and the preparation of the final output tables. Using existing data sets and structured as hands-on exercises, each chapter engages with practical issues associated with using data in research. These include: Data cleaning Data preparation Computation of descriptive statistics Using sample weights Choosing and implementing the right estimator Interpreting results Preparing final output tables Graphical representation Written by experienced authors this exciting textbook provides the practical tools needed to use panel data in research.
Publisher: SAGE
ISBN: 1473911338
Category : Social Science
Languages : en
Pages : 528
Book Description
This timely, thoughtful book provides a clear introduction to using panel data in research. It describes the different types of panel datasets commonly used for empirical analysis, and how to use them for cross sectional, panel, and event history analysis. Longhi and Nandi then guide the reader through the data management and estimation process, including the interpretation of the results and the preparation of the final output tables. Using existing data sets and structured as hands-on exercises, each chapter engages with practical issues associated with using data in research. These include: Data cleaning Data preparation Computation of descriptive statistics Using sample weights Choosing and implementing the right estimator Interpreting results Preparing final output tables Graphical representation Written by experienced authors this exciting textbook provides the practical tools needed to use panel data in research.
Applied Econometrics with R
Author: Christian Kleiber
Publisher: Springer Science & Business Media
ISBN: 0387773185
Category : Business & Economics
Languages : en
Pages : 229
Book Description
R is a language and environment for data analysis and graphics. It may be considered an implementation of S, an award-winning language initially - veloped at Bell Laboratories since the late 1970s. The R project was initiated by Robert Gentleman and Ross Ihaka at the University of Auckland, New Zealand, in the early 1990s, and has been developed by an international team since mid-1997. Historically, econometricians have favored other computing environments, some of which have fallen by the wayside, and also a variety of packages with canned routines. We believe that R has great potential in econometrics, both for research and for teaching. There are at least three reasons for this: (1) R is mostly platform independent and runs on Microsoft Windows, the Mac family of operating systems, and various ?avors of Unix/Linux, and also on some more exotic platforms. (2) R is free software that can be downloaded and installed at no cost from a family of mirror sites around the globe, the Comprehensive R Archive Network (CRAN); hence students can easily install it on their own machines. (3) R is open-source software, so that the full source code is available and can be inspected to understand what it really does, learn from it, and modify and extend it. We also like to think that platform independence and the open-source philosophy make R an ideal environment for reproducible econometric research.
Publisher: Springer Science & Business Media
ISBN: 0387773185
Category : Business & Economics
Languages : en
Pages : 229
Book Description
R is a language and environment for data analysis and graphics. It may be considered an implementation of S, an award-winning language initially - veloped at Bell Laboratories since the late 1970s. The R project was initiated by Robert Gentleman and Ross Ihaka at the University of Auckland, New Zealand, in the early 1990s, and has been developed by an international team since mid-1997. Historically, econometricians have favored other computing environments, some of which have fallen by the wayside, and also a variety of packages with canned routines. We believe that R has great potential in econometrics, both for research and for teaching. There are at least three reasons for this: (1) R is mostly platform independent and runs on Microsoft Windows, the Mac family of operating systems, and various ?avors of Unix/Linux, and also on some more exotic platforms. (2) R is free software that can be downloaded and installed at no cost from a family of mirror sites around the globe, the Comprehensive R Archive Network (CRAN); hence students can easily install it on their own machines. (3) R is open-source software, so that the full source code is available and can be inspected to understand what it really does, learn from it, and modify and extend it. We also like to think that platform independence and the open-source philosophy make R an ideal environment for reproducible econometric research.
Panel Data Econometrics with R
Author: Yves Croissant
Publisher: John Wiley & Sons
ISBN: 1118949188
Category : Mathematics
Languages : en
Pages : 435
Book Description
Panel Data Econometrics with R provides a tutorial for using R in the field of panel data econometrics. Illustrated throughout with examples in econometrics, political science, agriculture and epidemiology, this book presents classic methodology and applications as well as more advanced topics and recent developments in this field including error component models, spatial panels and dynamic models. They have developed the software programming in R and host replicable material on the book’s accompanying website.
Publisher: John Wiley & Sons
ISBN: 1118949188
Category : Mathematics
Languages : en
Pages : 435
Book Description
Panel Data Econometrics with R provides a tutorial for using R in the field of panel data econometrics. Illustrated throughout with examples in econometrics, political science, agriculture and epidemiology, this book presents classic methodology and applications as well as more advanced topics and recent developments in this field including error component models, spatial panels and dynamic models. They have developed the software programming in R and host replicable material on the book’s accompanying website.
Panel Data Models with Discrete Dependent Variables
Author: Edward Graham Johnson
Publisher:
ISBN:
Category :
Languages : en
Pages : 180
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 180
Book Description
Regression Models for Categorical Dependent Variables Using Stata, Second Edition
Author: J. Scott Long
Publisher: Stata Press
ISBN: 1597180114
Category : Computers
Languages : en
Pages : 559
Book Description
The goal of the book is to make easier to carry out the computations necessary for the full interpretation of regression nonlinear models for categorical outcomes usign Stata.
Publisher: Stata Press
ISBN: 1597180114
Category : Computers
Languages : en
Pages : 559
Book Description
The goal of the book is to make easier to carry out the computations necessary for the full interpretation of regression nonlinear models for categorical outcomes usign Stata.
Econometric Analysis of Cross Section and Panel Data, second edition
Author: Jeffrey M. Wooldridge
Publisher: MIT Press
ISBN: 0262232588
Category : Business & Economics
Languages : en
Pages : 1095
Book Description
The second edition of a comprehensive state-of-the-art graduate level text on microeconometric methods, substantially revised and updated. The second edition of this acclaimed graduate text provides a unified treatment of two methods used in contemporary econometric research, cross section and data panel methods. By focusing on assumptions that can be given behavioral content, the book maintains an appropriate level of rigor while emphasizing intuitive thinking. The analysis covers both linear and nonlinear models, including models with dynamics and/or individual heterogeneity. In addition to general estimation frameworks (particular methods of moments and maximum likelihood), specific linear and nonlinear methods are covered in detail, including probit and logit models and their multivariate, Tobit models, models for count data, censored and missing data schemes, causal (or treatment) effects, and duration analysis. Econometric Analysis of Cross Section and Panel Data was the first graduate econometrics text to focus on microeconomic data structures, allowing assumptions to be separated into population and sampling assumptions. This second edition has been substantially updated and revised. Improvements include a broader class of models for missing data problems; more detailed treatment of cluster problems, an important topic for empirical researchers; expanded discussion of "generalized instrumental variables" (GIV) estimation; new coverage (based on the author's own recent research) of inverse probability weighting; a more complete framework for estimating treatment effects with panel data, and a firmly established link between econometric approaches to nonlinear panel data and the "generalized estimating equation" literature popular in statistics and other fields. New attention is given to explaining when particular econometric methods can be applied; the goal is not only to tell readers what does work, but why certain "obvious" procedures do not. The numerous included exercises, both theoretical and computer-based, allow the reader to extend methods covered in the text and discover new insights.
Publisher: MIT Press
ISBN: 0262232588
Category : Business & Economics
Languages : en
Pages : 1095
Book Description
The second edition of a comprehensive state-of-the-art graduate level text on microeconometric methods, substantially revised and updated. The second edition of this acclaimed graduate text provides a unified treatment of two methods used in contemporary econometric research, cross section and data panel methods. By focusing on assumptions that can be given behavioral content, the book maintains an appropriate level of rigor while emphasizing intuitive thinking. The analysis covers both linear and nonlinear models, including models with dynamics and/or individual heterogeneity. In addition to general estimation frameworks (particular methods of moments and maximum likelihood), specific linear and nonlinear methods are covered in detail, including probit and logit models and their multivariate, Tobit models, models for count data, censored and missing data schemes, causal (or treatment) effects, and duration analysis. Econometric Analysis of Cross Section and Panel Data was the first graduate econometrics text to focus on microeconomic data structures, allowing assumptions to be separated into population and sampling assumptions. This second edition has been substantially updated and revised. Improvements include a broader class of models for missing data problems; more detailed treatment of cluster problems, an important topic for empirical researchers; expanded discussion of "generalized instrumental variables" (GIV) estimation; new coverage (based on the author's own recent research) of inverse probability weighting; a more complete framework for estimating treatment effects with panel data, and a firmly established link between econometric approaches to nonlinear panel data and the "generalized estimating equation" literature popular in statistics and other fields. New attention is given to explaining when particular econometric methods can be applied; the goal is not only to tell readers what does work, but why certain "obvious" procedures do not. The numerous included exercises, both theoretical and computer-based, allow the reader to extend methods covered in the text and discover new insights.
Discrete Choice Methods with Simulation
Author: Kenneth Train
Publisher: Cambridge University Press
ISBN: 0521766559
Category : Business & Economics
Languages : en
Pages : 399
Book Description
This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.
Publisher: Cambridge University Press
ISBN: 0521766559
Category : Business & Economics
Languages : en
Pages : 399
Book Description
This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.
Panel Data Econometrics
Author: Mike Tsionas
Publisher: Academic Press
ISBN: 0128144319
Category : Business & Economics
Languages : en
Pages : 434
Book Description
Panel Data Econometrics: Theory introduces econometric modelling. Written by experts from diverse disciplines, the volume uses longitudinal datasets to illuminate applications for a variety of fields, such as banking, financial markets, tourism and transportation, auctions, and experimental economics. Contributors emphasize techniques and applications, and they accompany their explanations with case studies, empirical exercises and supplementary code in R. They also address panel data analysis in the context of productivity and efficiency analysis, where some of the most interesting applications and advancements have recently been made. - Provides a vast array of empirical applications useful to practitioners from different application environments - Accompanied by extensive case studies and empirical exercises - Includes empirical chapters accompanied by supplementary code in R, helping researchers replicate findings - Represents an accessible resource for diverse industries, including health, transportation, tourism, economic growth, and banking, where researchers are not always econometrics experts
Publisher: Academic Press
ISBN: 0128144319
Category : Business & Economics
Languages : en
Pages : 434
Book Description
Panel Data Econometrics: Theory introduces econometric modelling. Written by experts from diverse disciplines, the volume uses longitudinal datasets to illuminate applications for a variety of fields, such as banking, financial markets, tourism and transportation, auctions, and experimental economics. Contributors emphasize techniques and applications, and they accompany their explanations with case studies, empirical exercises and supplementary code in R. They also address panel data analysis in the context of productivity and efficiency analysis, where some of the most interesting applications and advancements have recently been made. - Provides a vast array of empirical applications useful to practitioners from different application environments - Accompanied by extensive case studies and empirical exercises - Includes empirical chapters accompanied by supplementary code in R, helping researchers replicate findings - Represents an accessible resource for diverse industries, including health, transportation, tourism, economic growth, and banking, where researchers are not always econometrics experts
Regression Models for Categorical and Limited Dependent Variables
Author: J. Scott Long
Publisher: SAGE
ISBN: 9780803973749
Category : Mathematics
Languages : en
Pages : 334
Book Description
Evaluates the most useful models for categorical and limited dependent variables (CLDVs), emphasizing the links among models and applying common methods of derivation, interpretation, and testing. The author also explains how models relate to linear regression models whenever possible. Annotation c.
Publisher: SAGE
ISBN: 9780803973749
Category : Mathematics
Languages : en
Pages : 334
Book Description
Evaluates the most useful models for categorical and limited dependent variables (CLDVs), emphasizing the links among models and applying common methods of derivation, interpretation, and testing. The author also explains how models relate to linear regression models whenever possible. Annotation c.
An Introduction to Modern Econometrics Using Stata
Author: Christopher F. Baum
Publisher: Stata Press
ISBN: 1597180130
Category : Business & Economics
Languages : en
Pages : 362
Book Description
Integrating a contemporary approach to econometrics with the powerful computational tools offered by Stata, this introduction illustrates how to apply econometric theories used in modern empirical research using Stata. The author emphasizes the role of method-of-moments estimators, hypothesis testing, and specification analysis and provides practical examples that show how to apply the theories to real data sets. The book first builds familiarity with the basic skills needed to work with econometric data in Stata before delving into the core topics, which range from the multiple linear regression model to instrumental-variables estimation.
Publisher: Stata Press
ISBN: 1597180130
Category : Business & Economics
Languages : en
Pages : 362
Book Description
Integrating a contemporary approach to econometrics with the powerful computational tools offered by Stata, this introduction illustrates how to apply econometric theories used in modern empirical research using Stata. The author emphasizes the role of method-of-moments estimators, hypothesis testing, and specification analysis and provides practical examples that show how to apply the theories to real data sets. The book first builds familiarity with the basic skills needed to work with econometric data in Stata before delving into the core topics, which range from the multiple linear regression model to instrumental-variables estimation.