Overcoming the Failure of the Classical Generalized Interior-point Regularity Conditions in Convex Optimization

Overcoming the Failure of the Classical Generalized Interior-point Regularity Conditions in Convex Optimization PDF Author: Ernö Robert Csetnek
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832525033
Category : Mathematics
Languages : en
Pages : 109

Get Book Here

Book Description
The aim of this work is to present several new results concerning duality in scalar convex optimization, the formulation of sequential optimality conditions and some applications of the duality to the theory of maximal monotone operators. After recalling some properties of the classical generalized interiority notions which exist in the literature, we give some properties of the quasi interior and quasi-relative interior, respectively. By means of these notions we introduce several generalized interior-point regularity conditions which guarantee Fenchel duality. By using an approach due to Magnanti, we derive corresponding regularity conditions expressed via the quasi interior and quasi-relative interior which ensure Lagrange duality. These conditions have the advantage to be applicable in situations when other classical regularity conditions fail. Moreover, we notice that several duality results given in the literature on this topic have either superfluous or contradictory assumptions, the investigations we make offering in this sense an alternative. Necessary and sufficient sequential optimality conditions for a general convex optimization problem are established via perturbation theory. These results are applicable even in the absence of regularity conditions. In particular, we show that several results from the literature dealing with sequential optimality conditions are rediscovered and even improved. The second part of the thesis is devoted to applications of the duality theory to enlargements of maximal monotone operators in Banach spaces. After establishing a necessary and sufficient condition for a bivariate infimal convolution formula, by employing it we equivalently characterize the $\varepsilon$-enlargement of the sum of two maximal monotone operators. We generalize in this way a classical result concerning the formula for the $\varepsilon$-subdifferential of the sum of two proper, convex and lower semicontinuous functions. A characterization of fully en.

Overcoming the Failure of the Classical Generalized Interior-point Regularity Conditions in Convex Optimization

Overcoming the Failure of the Classical Generalized Interior-point Regularity Conditions in Convex Optimization PDF Author: Ernö Robert Csetnek
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832525033
Category : Mathematics
Languages : en
Pages : 109

Get Book Here

Book Description
The aim of this work is to present several new results concerning duality in scalar convex optimization, the formulation of sequential optimality conditions and some applications of the duality to the theory of maximal monotone operators. After recalling some properties of the classical generalized interiority notions which exist in the literature, we give some properties of the quasi interior and quasi-relative interior, respectively. By means of these notions we introduce several generalized interior-point regularity conditions which guarantee Fenchel duality. By using an approach due to Magnanti, we derive corresponding regularity conditions expressed via the quasi interior and quasi-relative interior which ensure Lagrange duality. These conditions have the advantage to be applicable in situations when other classical regularity conditions fail. Moreover, we notice that several duality results given in the literature on this topic have either superfluous or contradictory assumptions, the investigations we make offering in this sense an alternative. Necessary and sufficient sequential optimality conditions for a general convex optimization problem are established via perturbation theory. These results are applicable even in the absence of regularity conditions. In particular, we show that several results from the literature dealing with sequential optimality conditions are rediscovered and even improved. The second part of the thesis is devoted to applications of the duality theory to enlargements of maximal monotone operators in Banach spaces. After establishing a necessary and sufficient condition for a bivariate infimal convolution formula, by employing it we equivalently characterize the $\varepsilon$-enlargement of the sum of two maximal monotone operators. We generalize in this way a classical result concerning the formula for the $\varepsilon$-subdifferential of the sum of two proper, convex and lower semicontinuous functions. A characterization of fully en.

Fixed-Point Algorithms for Inverse Problems in Science and Engineering

Fixed-Point Algorithms for Inverse Problems in Science and Engineering PDF Author: Heinz H. Bauschke
Publisher: Springer Science & Business Media
ISBN: 1441995692
Category : Mathematics
Languages : en
Pages : 409

Get Book Here

Book Description
"Fixed-Point Algorithms for Inverse Problems in Science and Engineering" presents some of the most recent work from top-notch researchers studying projection and other first-order fixed-point algorithms in several areas of mathematics and the applied sciences. The material presented provides a survey of the state-of-the-art theory and practice in fixed-point algorithms, identifying emerging problems driven by applications, and discussing new approaches for solving these problems. This book incorporates diverse perspectives from broad-ranging areas of research including, variational analysis, numerical linear algebra, biotechnology, materials science, computational solid-state physics, and chemistry. Topics presented include: Theory of Fixed-point algorithms: convex analysis, convex optimization, subdifferential calculus, nonsmooth analysis, proximal point methods, projection methods, resolvent and related fixed-point theoretic methods, and monotone operator theory. Numerical analysis of fixed-point algorithms: choice of step lengths, of weights, of blocks for block-iterative and parallel methods, and of relaxation parameters; regularization of ill-posed problems; numerical comparison of various methods. Areas of Applications: engineering (image and signal reconstruction and decompression problems), computer tomography and radiation treatment planning (convex feasibility problems), astronomy (adaptive optics), crystallography (molecular structure reconstruction), computational chemistry (molecular structure simulation) and other areas. Because of the variety of applications presented, this book can easily serve as a basis for new and innovated research and collaboration.

Multi-Composed Programming with Applications to Facility Location

Multi-Composed Programming with Applications to Facility Location PDF Author: Oleg Wilfer
Publisher: Springer Nature
ISBN: 3658305800
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
Oleg Wilfer presents a new conjugate duality concept for geometric and cone constrained optimization problems whose objective functions are a composition of finitely many functions. As an application, the author derives results for single minmax location problems formulated by means of extended perturbed minimal time functions as well as for multi-facility minmax location problems defined by gauges. In addition, he provides formulae of projections onto the epigraphs of gauges to solve these kinds of location problems numerically by using parallel splitting algorithms. Numerical comparisons of recent methods show the excellent performance of the proposed solving technique. ​About the Author: Dr. Oleg Wilfer received his PhD at the Faculty of Mathematics of Chemnitz University of Technology, Germany. He is currently working as a development engineer in the automotive industry.

Hilbert Projection Theorem

Hilbert Projection Theorem PDF Author: Fouad Sabry
Publisher: One Billion Knowledgeable
ISBN:
Category : Computers
Languages : en
Pages : 163

Get Book Here

Book Description
What is Hilbert Projection Theorem In mathematics, the Hilbert projection theorem is a famous result of convex analysis that says that for every vector in a Hilbert space and every nonempty closed convex there exists a unique vector for which is minimized over the vectors ; that is, such that for every How you will benefit (I) Insights, and validations about the following topics: Chapter 1: Hilbert Projection Theorem Chapter 2: Banach space Chapter 3: Inner product space Chapter 4: Riesz representation theorem Chapter 5: Self-adjoint operator Chapter 6: Trace class Chapter 7: Operator (physics) Chapter 8: Hilbert space Chapter 9: Norm (mathematics) Chapter 10: Convex analysis (II) Answering the public top questions about hilbert projection theorem. (III) Real world examples for the usage of hilbert projection theorem in many fields. Who this book is for Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of Hilbert Projection Theorem.

Convex Analysis and Nonlinear Optimization

Convex Analysis and Nonlinear Optimization PDF Author: Jonathan Borwein
Publisher: Springer Science & Business Media
ISBN: 0387312560
Category : Mathematics
Languages : en
Pages : 316

Get Book Here

Book Description
Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This book aims to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. Each section concludes with an often extensive set of optional exercises. This new edition adds material on semismooth optimization, as well as several new proofs.

Interior Point Methods for Linear Optimization

Interior Point Methods for Linear Optimization PDF Author: Cornelis Roos
Publisher: Springer Science & Business Media
ISBN: 0387263799
Category : Mathematics
Languages : en
Pages : 501

Get Book Here

Book Description
The era of interior point methods (IPMs) was initiated by N. Karmarkar’s 1984 paper, which triggered turbulent research and reshaped almost all areas of optimization theory and computational practice. This book offers comprehensive coverage of IPMs. It details the main results of more than a decade of IPM research. Numerous exercises are provided to aid in understanding the material.

Optimization Methods in Finance

Optimization Methods in Finance PDF Author: Gerard Cornuejols
Publisher: Cambridge University Press
ISBN: 9780521861700
Category : Mathematics
Languages : en
Pages : 358

Get Book Here

Book Description
Optimization models play an increasingly important role in financial decisions. This is the first textbook devoted to explaining how recent advances in optimization models, methods and software can be applied to solve problems in computational finance more efficiently and accurately. Chapters discussing the theory and efficient solution methods for all major classes of optimization problems alternate with chapters illustrating their use in modeling problems of mathematical finance. The reader is guided through topics such as volatility estimation, portfolio optimization problems and constructing an index fund, using techniques such as nonlinear optimization models, quadratic programming formulations and integer programming models respectively. The book is based on Master's courses in financial engineering and comes with worked examples, exercises and case studies. It will be welcomed by applied mathematicians, operational researchers and others who work in mathematical and computational finance and who are seeking a text for self-learning or for use with courses.

Functional Analysis, Sobolev Spaces and Partial Differential Equations

Functional Analysis, Sobolev Spaces and Partial Differential Equations PDF Author: Haim Brezis
Publisher: Springer Science & Business Media
ISBN: 0387709142
Category : Mathematics
Languages : en
Pages : 600

Get Book Here

Book Description
This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.

Optimal Transport for Applied Mathematicians

Optimal Transport for Applied Mathematicians PDF Author: Filippo Santambrogio
Publisher: Birkhäuser
ISBN: 3319208284
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
This monograph presents a rigorous mathematical introduction to optimal transport as a variational problem, its use in modeling various phenomena, and its connections with partial differential equations. Its main goal is to provide the reader with the techniques necessary to understand the current research in optimal transport and the tools which are most useful for its applications. Full proofs are used to illustrate mathematical concepts and each chapter includes a section that discusses applications of optimal transport to various areas, such as economics, finance, potential games, image processing and fluid dynamics. Several topics are covered that have never been previously in books on this subject, such as the Knothe transport, the properties of functionals on measures, the Dacorogna-Moser flow, the formulation through minimal flows with prescribed divergence formulation, the case of the supremal cost, and the most classical numerical methods. Graduate students and researchers in both pure and applied mathematics interested in the problems and applications of optimal transport will find this to be an invaluable resource.

Elements of Structural Optimization

Elements of Structural Optimization PDF Author: Raphael T. Haftka
Publisher: Springer Science & Business Media
ISBN: 9401578621
Category : Technology & Engineering
Languages : en
Pages : 402

Get Book Here

Book Description
The field of structural optimization is still a relatively new field undergoing rapid changes in methods and focus. Until recently there was a severe imbalance between the enormous amount of literature on the subject, and the paucity of applications to practical design problems. This imbalance is being gradually redressed now. There is still no shortage of new publications, but there are also exciting applications of the methods of structural optimizations in the automotive, aerospace, civil engineering, machine design and other engineering fields. As a result of the growing pace of applications, research into structural optimization methods is increasingly driven by real-life problems. Most engineers who design structures employ complex general-purpose software packages for structural analysis. Often they do not have any access to the source the details of program, and even more frequently they have only scant knowledge of the structural analysis algorithms used in this software packages. Therefore the major challenge faced by researchers in structural optimization is to develop methods that are suitable for use with such software packages. Another major challenge is the high computational cost associated with the analysis of many complex real-life problems. In many cases the engineer who has the task of designing a structure cannot afford to analyze it more than a handful of times.