Author: P. P. Saksonov
Publisher:
ISBN:
Category : Radiation
Languages : en
Pages : 620
Book Description
Outline of Space Radiobiology
Author: P. P. Saksonov
Publisher:
ISBN:
Category : Radiation
Languages : en
Pages : 620
Book Description
Publisher:
ISBN:
Category : Radiation
Languages : en
Pages : 620
Book Description
Electromagnetic Radiation in Space
Author: J.G. Emming
Publisher: Springer Science & Business Media
ISBN: 9401035261
Category : Science
Languages : en
Pages : 310
Book Description
The subject of this volume in the Astrophysics and Space Science Library is Electro magnetic Radiation in Space. It is essentially based on the lectures given at the third ESRO Summer School which was held from 19 July to 13 August, 1965, in Alpbach, Austria. Fifty-eight selected students attended the courses representing the following countries: Austria (2), Belgium (1), Denmark (1), France (12), Germany (10), Italy (7), Netherlands (2), Spain (4), Sweden (6), Switzerland (3), United Kingdom (9), United States (1). Thirteen lectures courses and nine seminars were given by sixteen different scientists in total. In this book the courses and seminars have been classified in three parts according to the kind of radiation which they mainly deal with: Ultraviolet Radiation, X Radiation and Cosmic Radiation. These parts can be broken down further in theo retical and observational aspects, whereas in the first and second part solar as well as stellar ultraviolet- and X-radiation can be distinguished. * Due to various reasons the publication of this volume had to be delayed; it was therefore judged appropriate to bring the text up to date. The various lecturers have been asked to revise the manuscripts and to eventually add new information which has been acquired in this rapidly evolving field of space astrophysics. Most authors have responded positively to this request, some even have completely rewritten the manuscript.
Publisher: Springer Science & Business Media
ISBN: 9401035261
Category : Science
Languages : en
Pages : 310
Book Description
The subject of this volume in the Astrophysics and Space Science Library is Electro magnetic Radiation in Space. It is essentially based on the lectures given at the third ESRO Summer School which was held from 19 July to 13 August, 1965, in Alpbach, Austria. Fifty-eight selected students attended the courses representing the following countries: Austria (2), Belgium (1), Denmark (1), France (12), Germany (10), Italy (7), Netherlands (2), Spain (4), Sweden (6), Switzerland (3), United Kingdom (9), United States (1). Thirteen lectures courses and nine seminars were given by sixteen different scientists in total. In this book the courses and seminars have been classified in three parts according to the kind of radiation which they mainly deal with: Ultraviolet Radiation, X Radiation and Cosmic Radiation. These parts can be broken down further in theo retical and observational aspects, whereas in the first and second part solar as well as stellar ultraviolet- and X-radiation can be distinguished. * Due to various reasons the publication of this volume had to be delayed; it was therefore judged appropriate to bring the text up to date. The various lecturers have been asked to revise the manuscripts and to eventually add new information which has been acquired in this rapidly evolving field of space astrophysics. Most authors have responded positively to this request, some even have completely rewritten the manuscript.
Recapturing a Future for Space Exploration
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309163846
Category : Science
Languages : en
Pages : 464
Book Description
More than four decades have passed since a human first set foot on the Moon. Great strides have been made in our understanding of what is required to support an enduring human presence in space, as evidenced by progressively more advanced orbiting human outposts, culminating in the current International Space Station (ISS). However, of the more than 500 humans who have so far ventured into space, most have gone only as far as near-Earth orbit, and none have traveled beyond the orbit of the Moon. Achieving humans' further progress into the solar system had proved far more difficult than imagined in the heady days of the Apollo missions, but the potential rewards remain substantial. During its more than 50-year history, NASA's success in human space exploration has depended on the agency's ability to effectively address a wide range of biomedical, engineering, physical science, and related obstacles-an achievement made possible by NASA's strong and productive commitments to life and physical sciences research for human space exploration, and by its use of human space exploration infrastructures for scientific discovery. The Committee for the Decadal Survey of Biological and Physical Sciences acknowledges the many achievements of NASA, which are all the more remarkable given budgetary challenges and changing directions within the agency. In the past decade, however, a consequence of those challenges has been a life and physical sciences research program that was dramatically reduced in both scale and scope, with the result that the agency is poorly positioned to take full advantage of the scientific opportunities offered by the now fully equipped and staffed ISS laboratory, or to effectively pursue the scientific research needed to support the development of advanced human exploration capabilities. Although its review has left it deeply concerned about the current state of NASA's life and physical sciences research, the Committee for the Decadal Survey on Biological and Physical Sciences in Space is nevertheless convinced that a focused science and engineering program can achieve successes that will bring the space community, the U.S. public, and policymakers to an understanding that we are ready for the next significant phase of human space exploration. The goal of this report is to lay out steps and develop a forward-looking portfolio of research that will provide the basis for recapturing the excitement and value of human spaceflight-thereby enabling the U.S. space program to deliver on new exploration initiatives that serve the nation, excite the public, and place the United States again at the forefront of space exploration for the global good.
Publisher: National Academies Press
ISBN: 0309163846
Category : Science
Languages : en
Pages : 464
Book Description
More than four decades have passed since a human first set foot on the Moon. Great strides have been made in our understanding of what is required to support an enduring human presence in space, as evidenced by progressively more advanced orbiting human outposts, culminating in the current International Space Station (ISS). However, of the more than 500 humans who have so far ventured into space, most have gone only as far as near-Earth orbit, and none have traveled beyond the orbit of the Moon. Achieving humans' further progress into the solar system had proved far more difficult than imagined in the heady days of the Apollo missions, but the potential rewards remain substantial. During its more than 50-year history, NASA's success in human space exploration has depended on the agency's ability to effectively address a wide range of biomedical, engineering, physical science, and related obstacles-an achievement made possible by NASA's strong and productive commitments to life and physical sciences research for human space exploration, and by its use of human space exploration infrastructures for scientific discovery. The Committee for the Decadal Survey of Biological and Physical Sciences acknowledges the many achievements of NASA, which are all the more remarkable given budgetary challenges and changing directions within the agency. In the past decade, however, a consequence of those challenges has been a life and physical sciences research program that was dramatically reduced in both scale and scope, with the result that the agency is poorly positioned to take full advantage of the scientific opportunities offered by the now fully equipped and staffed ISS laboratory, or to effectively pursue the scientific research needed to support the development of advanced human exploration capabilities. Although its review has left it deeply concerned about the current state of NASA's life and physical sciences research, the Committee for the Decadal Survey on Biological and Physical Sciences in Space is nevertheless convinced that a focused science and engineering program can achieve successes that will bring the space community, the U.S. public, and policymakers to an understanding that we are ready for the next significant phase of human space exploration. The goal of this report is to lay out steps and develop a forward-looking portfolio of research that will provide the basis for recapturing the excitement and value of human spaceflight-thereby enabling the U.S. space program to deliver on new exploration initiatives that serve the nation, excite the public, and place the United States again at the forefront of space exploration for the global good.
Essentials of Radiation Biology and Protection
Author: Steve Forshier
Publisher: Cengage Learning
ISBN: 9780766813311
Category : Radiation
Languages : en
Pages : 0
Book Description
Chapter Objectives, Lecture Outlines, Review of Key Terms, Review Questions, Web Resources, Answer Key
Publisher: Cengage Learning
ISBN: 9780766813311
Category : Radiation
Languages : en
Pages : 0
Book Description
Chapter Objectives, Lecture Outlines, Review of Key Terms, Review Questions, Web Resources, Answer Key
Solar Energetic Particles
Author: Donald V. Reames
Publisher: Springer
ISBN: 3319508717
Category : Science
Languages : en
Pages : 136
Book Description
This concise primer introduces the non-specialist reader to the physics of solar energetic particles (SEP) and systematically reviews the evidence for the two main mechanisms which lead to the so-called impulsive and gradual SEP events. More specifically, the timing of the onsets, the longitude distributions, the high-energy spectral shapes, the correlations with other solar phenomena (e.g. coronal mass ejections), as well as the all-important elemental and isotopic abundances of SEPs are investigated. Impulsive SEP events are related to magnetic reconnection in solar flares and jets. The concept of shock acceleration by scattering on self-amplified Alfvén waves is introduced, as is the evidence of reacceleration of impulsive-SEP material in the seed population accessed by the shocks in gradual events. The text then develops processes of transport of ions out to an observer. Finally, a new technique to determine the source plasma temperature in both impulsive and gradual events is demonstrated. Last but not least the role of SEP events as a radiation hazard in space is mentioned and a short discussion of the nature of the main particle telescope designs that have contributed to most of the SEP measurements is given.
Publisher: Springer
ISBN: 3319508717
Category : Science
Languages : en
Pages : 136
Book Description
This concise primer introduces the non-specialist reader to the physics of solar energetic particles (SEP) and systematically reviews the evidence for the two main mechanisms which lead to the so-called impulsive and gradual SEP events. More specifically, the timing of the onsets, the longitude distributions, the high-energy spectral shapes, the correlations with other solar phenomena (e.g. coronal mass ejections), as well as the all-important elemental and isotopic abundances of SEPs are investigated. Impulsive SEP events are related to magnetic reconnection in solar flares and jets. The concept of shock acceleration by scattering on self-amplified Alfvén waves is introduced, as is the evidence of reacceleration of impulsive-SEP material in the seed population accessed by the shocks in gradual events. The text then develops processes of transport of ions out to an observer. Finally, a new technique to determine the source plasma temperature in both impulsive and gradual events is demonstrated. Last but not least the role of SEP events as a radiation hazard in space is mentioned and a short discussion of the nature of the main particle telescope designs that have contributed to most of the SEP measurements is given.
Comprehensive Biomedical Physics
Author:
Publisher: Newnes
ISBN: 0444536337
Category : Science
Languages : en
Pages : 4052
Book Description
Comprehensive Biomedical Physics, Ten Volume Set is a new reference work that provides the first point of entry to the literature for all scientists interested in biomedical physics. It is of particularly use for graduate and postgraduate students in the areas of medical biophysics. This Work is indispensable to all serious readers in this interdisciplinary area where physics is applied in medicine and biology. Written by leading scientists who have evaluated and summarized the most important methods, principles, technologies and data within the field, Comprehensive Biomedical Physics is a vital addition to the reference libraries of those working within the areas of medical imaging, radiation sources, detectors, biology, safety and therapy, physiology, and pharmacology as well as in the treatment of different clinical conditions and bioinformatics. This Work will be valuable to students working in all aspect of medical biophysics, including medical imaging and biomedical radiation science and therapy, physiology, pharmacology and treatment of clinical conditions and bioinformatics. The most comprehensive work on biomedical physics ever published Covers one of the fastest growing areas in the physical sciences, including interdisciplinary areas ranging from advanced nuclear physics and quantum mechanics through mathematics to molecular biology and medicine Contains 1800 illustrations, all in full color
Publisher: Newnes
ISBN: 0444536337
Category : Science
Languages : en
Pages : 4052
Book Description
Comprehensive Biomedical Physics, Ten Volume Set is a new reference work that provides the first point of entry to the literature for all scientists interested in biomedical physics. It is of particularly use for graduate and postgraduate students in the areas of medical biophysics. This Work is indispensable to all serious readers in this interdisciplinary area where physics is applied in medicine and biology. Written by leading scientists who have evaluated and summarized the most important methods, principles, technologies and data within the field, Comprehensive Biomedical Physics is a vital addition to the reference libraries of those working within the areas of medical imaging, radiation sources, detectors, biology, safety and therapy, physiology, and pharmacology as well as in the treatment of different clinical conditions and bioinformatics. This Work will be valuable to students working in all aspect of medical biophysics, including medical imaging and biomedical radiation science and therapy, physiology, pharmacology and treatment of clinical conditions and bioinformatics. The most comprehensive work on biomedical physics ever published Covers one of the fastest growing areas in the physical sciences, including interdisciplinary areas ranging from advanced nuclear physics and quantum mechanics through mathematics to molecular biology and medicine Contains 1800 illustrations, all in full color
Radiation Biophysics
Author: Edward L. Alpen
Publisher: Academic Press
ISBN: 0080540201
Category : Science
Languages : en
Pages : 517
Book Description
This newly revised and updated edition of Radiation Biophysics provides an in-depth description of the physics and chemistry of radiation and its effects on biological systems. Coverage begins with fundamental concepts of the physics of radiation and radioactivity, then progresses through the chemistry and biology of the interaction of radiation with living systems. The Second Edition of this highly praised text includes major revisions which reflect the rapid advances in the field. New material covers recent developments in the fields of carcinogenesis, DNA repair, molecular genetics, and the molecular biology of oncogenes and tumor suppressor genes. The book also includes extensive discussion of the practical impact of radiation on everyday life. - Covers the fundamentals of radiation physics in a manner that is understandable to students and professionals with a limited physics background - Includes problem sets and exercises to aid both teachers and students - Discusses radioactivity, internally deposited radionuclides, and dosimetry - Analyzes the risks for occupational and non-occupational workers exposed to radiation sources
Publisher: Academic Press
ISBN: 0080540201
Category : Science
Languages : en
Pages : 517
Book Description
This newly revised and updated edition of Radiation Biophysics provides an in-depth description of the physics and chemistry of radiation and its effects on biological systems. Coverage begins with fundamental concepts of the physics of radiation and radioactivity, then progresses through the chemistry and biology of the interaction of radiation with living systems. The Second Edition of this highly praised text includes major revisions which reflect the rapid advances in the field. New material covers recent developments in the fields of carcinogenesis, DNA repair, molecular genetics, and the molecular biology of oncogenes and tumor suppressor genes. The book also includes extensive discussion of the practical impact of radiation on everyday life. - Covers the fundamentals of radiation physics in a manner that is understandable to students and professionals with a limited physics background - Includes problem sets and exercises to aid both teachers and students - Discusses radioactivity, internally deposited radionuclides, and dosimetry - Analyzes the risks for occupational and non-occupational workers exposed to radiation sources
Problems of Space Biology
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 982
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 982
Book Description
Radiation and the International Space Station
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309068851
Category : Science
Languages : en
Pages : 96
Book Description
A major objective of the International Space Station is learning how to cope with the inherent risks of human spaceflightâ€"how to live and work in space for extended periods. The construction of the station itself provides the first opportunity for doing so. Prominent among the challenges associated with ISS construction is the large amount of time that astronauts will be spending doing extravehicular activity (EVA), or "space walks." EVAs from the space shuttle have been extraordinarily successful, most notably the on-orbit repair of the Hubble Space Telescope. But the number of hours of EVA for ISS construction exceeds that of the Hubble repair mission by orders of magnitude. Furthermore, the ISS orbit has nearly twice the inclination to Earth's equator as Hubble's orbit, so it spends part of every 90-minute circumnavigation at high latitudes, where Earth's magnetic field is less effective at shielding impinging radiation. This means that astronauts sweeping through these regions will be considerably more vulnerable to dangerous doses of energetic particles from a sudden solar eruption. Radiation and the International Space Station estimates that the likelihood of having a potentially dangerous solar event during an EVA is indeed very high. This report recommends steps that can be taken immediately, and over the next several years, to provide adequate warning so that the astronauts can be directed to take protective cover inside the ISS or shuttle. The near-term actions include programmatic and operational ways to take advantage of the multiagency assets that currently monitor and forecast space weather, and ways to improve the in situ measurements and the predictive power of current models.
Publisher: National Academies Press
ISBN: 0309068851
Category : Science
Languages : en
Pages : 96
Book Description
A major objective of the International Space Station is learning how to cope with the inherent risks of human spaceflightâ€"how to live and work in space for extended periods. The construction of the station itself provides the first opportunity for doing so. Prominent among the challenges associated with ISS construction is the large amount of time that astronauts will be spending doing extravehicular activity (EVA), or "space walks." EVAs from the space shuttle have been extraordinarily successful, most notably the on-orbit repair of the Hubble Space Telescope. But the number of hours of EVA for ISS construction exceeds that of the Hubble repair mission by orders of magnitude. Furthermore, the ISS orbit has nearly twice the inclination to Earth's equator as Hubble's orbit, so it spends part of every 90-minute circumnavigation at high latitudes, where Earth's magnetic field is less effective at shielding impinging radiation. This means that astronauts sweeping through these regions will be considerably more vulnerable to dangerous doses of energetic particles from a sudden solar eruption. Radiation and the International Space Station estimates that the likelihood of having a potentially dangerous solar event during an EVA is indeed very high. This report recommends steps that can be taken immediately, and over the next several years, to provide adequate warning so that the astronauts can be directed to take protective cover inside the ISS or shuttle. The near-term actions include programmatic and operational ways to take advantage of the multiagency assets that currently monitor and forecast space weather, and ways to improve the in situ measurements and the predictive power of current models.
Space Radiation Biology and Related Topics
Author: Cornelius A. Tobias
Publisher: Elsevier
ISBN: 1483273865
Category : Science
Languages : en
Pages : 665
Book Description
Space Radiation Biology and Related Topics provides information pertinent to the fundamental aspects of space radiation biology. This book discusses space radiation hazards as well as the importance of natural radiations in the processes of biogenesis. Organized into 12 chapters, this book begins with an overview of the fundamental aspects of radiobiology. This text then discusses the theoretical treatments of the chronic radiation response and the applicability of some of its features in extended manned space missions. Other chapters review the literature on models for recovery from radiation damage to some cellular systems. This book discusses as well the effects of radiations on mammals, with emphasis on those effects pertinent to the space-flight situation. The final chapter deals with the safety of nuclear power in space and explains the three types of nuclear devices designed for power production in space. This book is a valuable resource for radiologists, radiobiologists, and radiotherapists.
Publisher: Elsevier
ISBN: 1483273865
Category : Science
Languages : en
Pages : 665
Book Description
Space Radiation Biology and Related Topics provides information pertinent to the fundamental aspects of space radiation biology. This book discusses space radiation hazards as well as the importance of natural radiations in the processes of biogenesis. Organized into 12 chapters, this book begins with an overview of the fundamental aspects of radiobiology. This text then discusses the theoretical treatments of the chronic radiation response and the applicability of some of its features in extended manned space missions. Other chapters review the literature on models for recovery from radiation damage to some cellular systems. This book discusses as well the effects of radiations on mammals, with emphasis on those effects pertinent to the space-flight situation. The final chapter deals with the safety of nuclear power in space and explains the three types of nuclear devices designed for power production in space. This book is a valuable resource for radiologists, radiobiologists, and radiotherapists.