Author: Deepak M. Kalaskar
Publisher: Woodhead Publishing
ISBN: 0323902200
Category : Science
Languages : en
Pages : 424
Book Description
3D Printing in Medicine, Second Edition examines the rapidly growing market of 3D-printed biomaterials and their clinical applications. With a particular focus on both commercial and premarket tools, the book looks at their applications within medicine and the future outlook for the field. The chapters are written by field experts actively engaged in educational and research activities at the top universities in the world. The earlier chapters cover the fundamentals of 3D printing, including topics such as materials and hardware. The later chapters go on to cover innovative applications within medicine such as computational analysis of 3D printed constructs, personalized 3D printing - including 3D cell and organ printing and the role of AI - with a subsequent look at the applications of high-resolution printing, 3D printing in diagnostics, drug development, 4D printing, and much more. This updated new edition features completely revised content, with additional new chapters covering organs-on-chips, bioprinting regulations and standards, intellectual properties, and socio-ethical implications of organs-on-demand. - Reviews a broad range of biomedical applications of 3D printing biomaterials and technologies - Provides an interdisciplinary look at 3D printing in medicine, bridging the gap between engineering and clinical fields - Includes completely updated content with additional new chapters, covering topics such as organs-on-chips, bioprinting regulations, intellectual properties, medical standards in 3D printing, and more
3D Printing in Medicine
Author: Deepak M. Kalaskar
Publisher: Woodhead Publishing
ISBN: 0323902200
Category : Science
Languages : en
Pages : 424
Book Description
3D Printing in Medicine, Second Edition examines the rapidly growing market of 3D-printed biomaterials and their clinical applications. With a particular focus on both commercial and premarket tools, the book looks at their applications within medicine and the future outlook for the field. The chapters are written by field experts actively engaged in educational and research activities at the top universities in the world. The earlier chapters cover the fundamentals of 3D printing, including topics such as materials and hardware. The later chapters go on to cover innovative applications within medicine such as computational analysis of 3D printed constructs, personalized 3D printing - including 3D cell and organ printing and the role of AI - with a subsequent look at the applications of high-resolution printing, 3D printing in diagnostics, drug development, 4D printing, and much more. This updated new edition features completely revised content, with additional new chapters covering organs-on-chips, bioprinting regulations and standards, intellectual properties, and socio-ethical implications of organs-on-demand. - Reviews a broad range of biomedical applications of 3D printing biomaterials and technologies - Provides an interdisciplinary look at 3D printing in medicine, bridging the gap between engineering and clinical fields - Includes completely updated content with additional new chapters, covering topics such as organs-on-chips, bioprinting regulations, intellectual properties, medical standards in 3D printing, and more
Publisher: Woodhead Publishing
ISBN: 0323902200
Category : Science
Languages : en
Pages : 424
Book Description
3D Printing in Medicine, Second Edition examines the rapidly growing market of 3D-printed biomaterials and their clinical applications. With a particular focus on both commercial and premarket tools, the book looks at their applications within medicine and the future outlook for the field. The chapters are written by field experts actively engaged in educational and research activities at the top universities in the world. The earlier chapters cover the fundamentals of 3D printing, including topics such as materials and hardware. The later chapters go on to cover innovative applications within medicine such as computational analysis of 3D printed constructs, personalized 3D printing - including 3D cell and organ printing and the role of AI - with a subsequent look at the applications of high-resolution printing, 3D printing in diagnostics, drug development, 4D printing, and much more. This updated new edition features completely revised content, with additional new chapters covering organs-on-chips, bioprinting regulations and standards, intellectual properties, and socio-ethical implications of organs-on-demand. - Reviews a broad range of biomedical applications of 3D printing biomaterials and technologies - Provides an interdisciplinary look at 3D printing in medicine, bridging the gap between engineering and clinical fields - Includes completely updated content with additional new chapters, covering topics such as organs-on-chips, bioprinting regulations, intellectual properties, medical standards in 3D printing, and more
Cell and Organ Printing
Author: Bradley R. Ringeisen
Publisher: Springer Science & Business Media
ISBN: 9048191459
Category : Medical
Languages : en
Pages : 259
Book Description
Cell and organ printing has become a hot topic of scientific pursuit. Since several early publications between 2000-2003 that demonstrated proof-of-concept, cell and organ printing has blossomed into a rich area for scientific exploration that is being performed by researchers across the globe. Research has thoroughly demonstrated that living cells can be printed via a number of actuations including electrospray, extrusion via micropens and ejection through photothermal, thermal or optical mechanisms. This topic has come of age and it is ripe for exploring the underpinnings of the research to date. We have included research that uses printing technology to deposit or guide cells for tissue engineering applications and for completeness, we have also included chapters describing bacteria printing, biomolecular printing that could be used to build growth factors or recruitment macromolecules into scaffolds, tissue microdissection, as well as live cell printing. The breadth of approaches includes 3D freeform fabrication, ink jet, laser guidance and modified laser direct write techniques. We hope that this book is not the final word but the first word, defining how these tools have been used to take the first steps towards the ultimate goal of creating heterogeneous tissue constructs. Only time will tell whether cell printers will truly become organ printers, but the technologies described in this book hold promise to achieve what the field of regenerative medicine requires - functional 3D scaffolds with multiple cell types differentiated into functional tissue!
Publisher: Springer Science & Business Media
ISBN: 9048191459
Category : Medical
Languages : en
Pages : 259
Book Description
Cell and organ printing has become a hot topic of scientific pursuit. Since several early publications between 2000-2003 that demonstrated proof-of-concept, cell and organ printing has blossomed into a rich area for scientific exploration that is being performed by researchers across the globe. Research has thoroughly demonstrated that living cells can be printed via a number of actuations including electrospray, extrusion via micropens and ejection through photothermal, thermal or optical mechanisms. This topic has come of age and it is ripe for exploring the underpinnings of the research to date. We have included research that uses printing technology to deposit or guide cells for tissue engineering applications and for completeness, we have also included chapters describing bacteria printing, biomolecular printing that could be used to build growth factors or recruitment macromolecules into scaffolds, tissue microdissection, as well as live cell printing. The breadth of approaches includes 3D freeform fabrication, ink jet, laser guidance and modified laser direct write techniques. We hope that this book is not the final word but the first word, defining how these tools have been used to take the first steps towards the ultimate goal of creating heterogeneous tissue constructs. Only time will tell whether cell printers will truly become organ printers, but the technologies described in this book hold promise to achieve what the field of regenerative medicine requires - functional 3D scaffolds with multiple cell types differentiated into functional tissue!
3D Bioprinting for Reconstructive Surgery
Author: Daniel J. Thomas
Publisher: Woodhead Publishing
ISBN: 0081012160
Category : Technology & Engineering
Languages : en
Pages : 452
Book Description
3D Bioprinting for Reconstructive Surgery: Techniques and Applications examines the combined use of materials, procedures and tools necessary for creating structural tissue constructs for reconstructive purposes. Offering a broad analysis of the field, the first set of chapters review the range of biomaterials which can be used to create 3D-printed tissue constructs. Part Two looks at the techniques needed to prepare biomaterials and biological materials for 3D printing, while the final set of chapters examines application-specific examples of tissues formed from 3D printed biomaterials. 3D printing of biomaterials for tissue engineering applications is becoming increasingly popular due to its ability to offer unique, patient-specific parts—on demand—at a relatively low cost. This book is a valuable resource for biomaterials scientists, biomedical engineers, practitioners and students wishing to broaden their knowledge in the allied field. - Discusses new possibilities in tissue engineering with 3D printing - Presents a comprehensive coverage of the materials, techniques and tools needed for producing bioprinted tissues - Reviews emerging technologies in addition to commercial techniques
Publisher: Woodhead Publishing
ISBN: 0081012160
Category : Technology & Engineering
Languages : en
Pages : 452
Book Description
3D Bioprinting for Reconstructive Surgery: Techniques and Applications examines the combined use of materials, procedures and tools necessary for creating structural tissue constructs for reconstructive purposes. Offering a broad analysis of the field, the first set of chapters review the range of biomaterials which can be used to create 3D-printed tissue constructs. Part Two looks at the techniques needed to prepare biomaterials and biological materials for 3D printing, while the final set of chapters examines application-specific examples of tissues formed from 3D printed biomaterials. 3D printing of biomaterials for tissue engineering applications is becoming increasingly popular due to its ability to offer unique, patient-specific parts—on demand—at a relatively low cost. This book is a valuable resource for biomaterials scientists, biomedical engineers, practitioners and students wishing to broaden their knowledge in the allied field. - Discusses new possibilities in tissue engineering with 3D printing - Presents a comprehensive coverage of the materials, techniques and tools needed for producing bioprinted tissues - Reviews emerging technologies in addition to commercial techniques
The Culture of Organs
Author: Alexis Carrel
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 258
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 258
Book Description
Essentials of 3D Biofabrication and Translation
Author: Anthony Atala
Publisher: Academic Press
ISBN: 0128010150
Category : Science
Languages : en
Pages : 441
Book Description
Essentials of 3D Biofabrication and Translation discusses the techniques that are making bioprinting a viable alternative in regenerative medicine. The book runs the gamut of topics related to the subject, including hydrogels and polymers, nanotechnology, toxicity testing, and drug screening platforms, also introducing current applications in the cardiac, skeletal, and nervous systems, and organ construction. Leaders in clinical medicine and translational science provide a global perspective of the transformative nature of this field, including the use of cells, biomaterials, and macromolecules to create basic building blocks of tissues and organs, all of which are driving the field of biofabrication to transform regenerative medicine. - Provides a new and versatile method to fabricating living tissue - Discusses future applications for 3D bioprinting technologies, including use in the cardiac, skeletal, and nervous systems, and organ construction - Describes current approaches and future challenges for translational science - Runs the gamut of topics related to the subject, from hydrogels and polymers to nanotechnology, toxicity testing, and drug screening platforms
Publisher: Academic Press
ISBN: 0128010150
Category : Science
Languages : en
Pages : 441
Book Description
Essentials of 3D Biofabrication and Translation discusses the techniques that are making bioprinting a viable alternative in regenerative medicine. The book runs the gamut of topics related to the subject, including hydrogels and polymers, nanotechnology, toxicity testing, and drug screening platforms, also introducing current applications in the cardiac, skeletal, and nervous systems, and organ construction. Leaders in clinical medicine and translational science provide a global perspective of the transformative nature of this field, including the use of cells, biomaterials, and macromolecules to create basic building blocks of tissues and organs, all of which are driving the field of biofabrication to transform regenerative medicine. - Provides a new and versatile method to fabricating living tissue - Discusses future applications for 3D bioprinting technologies, including use in the cardiac, skeletal, and nervous systems, and organ construction - Describes current approaches and future challenges for translational science - Runs the gamut of topics related to the subject, from hydrogels and polymers to nanotechnology, toxicity testing, and drug screening platforms
3D Printing for Tissue Engineering and Regenerative Medicine
Author: Murat Guvendiren
Publisher: MDPI
ISBN: 3039361120
Category : Technology & Engineering
Languages : en
Pages : 166
Book Description
Three-dimensional (3D) printing enables the fabrication of tissue-engineered constructs and devices from a patient’s own medical data, leading to the creation of anatomically matched and patient-specific constructs. There is a growing interest in applying 3D printing technologies in the fields of tissue engineering and regenerative medicine. The main printing methods include extrusion-based, vat photopolymerization, droplet-based, and powder-based printing. A variety of materials have been used for printing, from metal alloys and ceramics to polymers and elastomers as well as from hydrogels to extracellular matrix proteins. More recently, bioprinting, a subcategory of 3D printing, has enabled the precise assembly of cell-laden biomaterials (i.e., bioinks) for the construction of complex 3D functional living tissues or artificial organs. In this Special Issue, we aim to capture state-of-the-art research papers and the most current review papers focusing on 3D printing for tissue engineering and regenerative medicine. In particular, we seek novel studies on the development of 3D printing and bioprinting approaches, developing printable materials (inks and bioinks), and utilizing 3D-printed scaffolds for tissue engineering and regenerative medicine applications. These applications are not limited to but include scaffolds for in vivo tissue regeneration and tissue analogues for in vitro disease modeling and/or drug screening.
Publisher: MDPI
ISBN: 3039361120
Category : Technology & Engineering
Languages : en
Pages : 166
Book Description
Three-dimensional (3D) printing enables the fabrication of tissue-engineered constructs and devices from a patient’s own medical data, leading to the creation of anatomically matched and patient-specific constructs. There is a growing interest in applying 3D printing technologies in the fields of tissue engineering and regenerative medicine. The main printing methods include extrusion-based, vat photopolymerization, droplet-based, and powder-based printing. A variety of materials have been used for printing, from metal alloys and ceramics to polymers and elastomers as well as from hydrogels to extracellular matrix proteins. More recently, bioprinting, a subcategory of 3D printing, has enabled the precise assembly of cell-laden biomaterials (i.e., bioinks) for the construction of complex 3D functional living tissues or artificial organs. In this Special Issue, we aim to capture state-of-the-art research papers and the most current review papers focusing on 3D printing for tissue engineering and regenerative medicine. In particular, we seek novel studies on the development of 3D printing and bioprinting approaches, developing printable materials (inks and bioinks), and utilizing 3D-printed scaffolds for tissue engineering and regenerative medicine applications. These applications are not limited to but include scaffolds for in vivo tissue regeneration and tissue analogues for in vitro disease modeling and/or drug screening.
3D Printing for Implantable Medical Devices: From Surgical Reconstruction to Tissue/Organ Regeneration
Author: Julien Georges Didier Barthès
Publisher: Frontiers Media SA
ISBN: 2889665097
Category : Science
Languages : en
Pages : 186
Book Description
Dr. Julien Barthes is Collaborative Project Manager at PROTiP MEDICAL SAS. All other Topic Editors declare no competing interests with regards to the Research Topic subject.
Publisher: Frontiers Media SA
ISBN: 2889665097
Category : Science
Languages : en
Pages : 186
Book Description
Dr. Julien Barthes is Collaborative Project Manager at PROTiP MEDICAL SAS. All other Topic Editors declare no competing interests with regards to the Research Topic subject.
3D Bioprinting
Author: Ibrahim Tarik Ozbolat
Publisher: Academic Press
ISBN: 0128030305
Category : Medical
Languages : en
Pages : 358
Book Description
3D Bioprinting: Fundamentals, Principles and Applications provides the latest information on the fundamentals, principles, physics, and applications of 3D bioprinting. It contains descriptions of the various bioprinting processes and technologies used in additive biomanufacturing of tissue constructs, tissues, and organs using living cells. The increasing availability and decreasing costs of 3D printing technologies are driving its use to meet medical needs, and this book provides an overview of these technologies and their integration. Each chapter discusses current limitations on the relevant technology, giving future perspectives. Professor Ozbolat has pulled together expertise from the fields of bioprinting, tissue engineering, tissue fabrication, and 3D printing in his inclusive table of contents. Topics covered include raw materials, processes, machine technology, products, applications, and limitations. The information in this book will help bioengineers, tissue and manufacturing engineers, and medical doctors understand the features of each bioprinting process, as well as bioink and bioprinter types. In addition, the book presents tactics that can be used to select the appropriate process for a given application, such as tissue engineering and regenerative medicine, transplantation, clinics, or pharmaceutics. - Describes all aspects of the bioprinting process, from bioink processing through design for bioprinting, bioprinting techniques, bioprinter technologies, organ printing, applications, and future trends - Provides a detailed description of each bioprinting technique with an in-depth understanding of its process modeling, underlying physics and characteristics, suitable bioink and cell types printed, and major accomplishments achieved thus far - Explains organ printing technology in detail with a step-by-step roadmap for the 3D bioprinting of organs from isolating stem cells to the post-transplantation of organs - Presents tactics that can be used to select the appropriate process for a given application, such as tissue engineering and regenerative medicine, transplantation, clinics, or pharmaceutics
Publisher: Academic Press
ISBN: 0128030305
Category : Medical
Languages : en
Pages : 358
Book Description
3D Bioprinting: Fundamentals, Principles and Applications provides the latest information on the fundamentals, principles, physics, and applications of 3D bioprinting. It contains descriptions of the various bioprinting processes and technologies used in additive biomanufacturing of tissue constructs, tissues, and organs using living cells. The increasing availability and decreasing costs of 3D printing technologies are driving its use to meet medical needs, and this book provides an overview of these technologies and their integration. Each chapter discusses current limitations on the relevant technology, giving future perspectives. Professor Ozbolat has pulled together expertise from the fields of bioprinting, tissue engineering, tissue fabrication, and 3D printing in his inclusive table of contents. Topics covered include raw materials, processes, machine technology, products, applications, and limitations. The information in this book will help bioengineers, tissue and manufacturing engineers, and medical doctors understand the features of each bioprinting process, as well as bioink and bioprinter types. In addition, the book presents tactics that can be used to select the appropriate process for a given application, such as tissue engineering and regenerative medicine, transplantation, clinics, or pharmaceutics. - Describes all aspects of the bioprinting process, from bioink processing through design for bioprinting, bioprinting techniques, bioprinter technologies, organ printing, applications, and future trends - Provides a detailed description of each bioprinting technique with an in-depth understanding of its process modeling, underlying physics and characteristics, suitable bioink and cell types printed, and major accomplishments achieved thus far - Explains organ printing technology in detail with a step-by-step roadmap for the 3D bioprinting of organs from isolating stem cells to the post-transplantation of organs - Presents tactics that can be used to select the appropriate process for a given application, such as tissue engineering and regenerative medicine, transplantation, clinics, or pharmaceutics
3D Printing in Biotechnology
Author: Nandita Dasgupta
Publisher: Elsevier
ISBN: 0128203021
Category : Technology & Engineering
Languages : en
Pages : 229
Book Description
3D Printing in Biotechnology: Current Technologies and Applications explains the basic designs and recent progress in the application of 3D printing within various biotechnology fields. The book is a compilation of the basic fundamentals, designs, current applications, and future considerations related to this emerging technology, and summarizes the promising application of 3D bioprinting. Chapters contain detailed state-of-the-art knowledge to assist in the development and design of 3D printers, with applications in the medical, food, and environmental fields. This book will appeal to researchers and students from different disciplines, including materials science and technology, food, agriculture, and various biomedical fields.The content includes industrial applications and fills the gap between the research conducted in the laboratory and practical applications in related industries. - Offers an introduction to the emerging technologies and sectors in the field of 3D printing - Discusses the development of sustainable materials and bio-inks - Provides a guide for medical professionals and practitioners to incorporate current 3D printing technology into their medical practice - Bridges the knowledge gap for current designs used in 3D printing technology for designing an efficient and innovative 3D printer - Previews the technological basis for new farming practices and food engineering concepts utilizing 3D techniques
Publisher: Elsevier
ISBN: 0128203021
Category : Technology & Engineering
Languages : en
Pages : 229
Book Description
3D Printing in Biotechnology: Current Technologies and Applications explains the basic designs and recent progress in the application of 3D printing within various biotechnology fields. The book is a compilation of the basic fundamentals, designs, current applications, and future considerations related to this emerging technology, and summarizes the promising application of 3D bioprinting. Chapters contain detailed state-of-the-art knowledge to assist in the development and design of 3D printers, with applications in the medical, food, and environmental fields. This book will appeal to researchers and students from different disciplines, including materials science and technology, food, agriculture, and various biomedical fields.The content includes industrial applications and fills the gap between the research conducted in the laboratory and practical applications in related industries. - Offers an introduction to the emerging technologies and sectors in the field of 3D printing - Discusses the development of sustainable materials and bio-inks - Provides a guide for medical professionals and practitioners to incorporate current 3D printing technology into their medical practice - Bridges the knowledge gap for current designs used in 3D printing technology for designing an efficient and innovative 3D printer - Previews the technological basis for new farming practices and food engineering concepts utilizing 3D techniques
Thin Films, Atomic Layer Deposition, and 3D Printing
Author: Kingsley Ukoba
Publisher: CRC Press
ISBN: 1000999203
Category : Technology & Engineering
Languages : en
Pages : 315
Book Description
Thin Films, Atomic Layer Deposition, and 3D Printing explains the concept of thin films, atomic layers deposition, and the Fourth Industrial Revolution (4IR) with an aim to illustrate existing resources and give a broader perspective of the involved processes as well as provide a selection of different types of 3D printing, materials used for 3D printing, emerging trends and applications, and current top-performing 3D printers using different technologies. It covers the concept of the 4IR and its role in current and future human endeavors for both experts/nonexperts. The book includes figures, diagrams, and their applications in real-life situations. Features: Provides comprehensive material on conventional and emerging thin film, atomic layer, and additive technologies. Discusses the concept of Industry 4.0 in thin films technology. Details the preparation and properties of hybrid and scalable (ultra) thin materials for advanced applications. Explores detailed bibliometric analyses on pertinent applications. Interconnects atomic layer deposition and additive manufacturing. This book is aimed at researchers and graduate students in mechanical, materials, and metallurgical engineering.
Publisher: CRC Press
ISBN: 1000999203
Category : Technology & Engineering
Languages : en
Pages : 315
Book Description
Thin Films, Atomic Layer Deposition, and 3D Printing explains the concept of thin films, atomic layers deposition, and the Fourth Industrial Revolution (4IR) with an aim to illustrate existing resources and give a broader perspective of the involved processes as well as provide a selection of different types of 3D printing, materials used for 3D printing, emerging trends and applications, and current top-performing 3D printers using different technologies. It covers the concept of the 4IR and its role in current and future human endeavors for both experts/nonexperts. The book includes figures, diagrams, and their applications in real-life situations. Features: Provides comprehensive material on conventional and emerging thin film, atomic layer, and additive technologies. Discusses the concept of Industry 4.0 in thin films technology. Details the preparation and properties of hybrid and scalable (ultra) thin materials for advanced applications. Explores detailed bibliometric analyses on pertinent applications. Interconnects atomic layer deposition and additive manufacturing. This book is aimed at researchers and graduate students in mechanical, materials, and metallurgical engineering.