Optimized, Competitive Supercritical-CO2 Cycle GFR for Gen IV Service

Optimized, Competitive Supercritical-CO2 Cycle GFR for Gen IV Service PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
An overall plant design was developed for a gas-cooled fast reactor employing a direct supercritical Brayton power conversion system. The most important findings were that (1) the concept could be capital-cost competitive, but startup fuel cycle costs are penalized by the low core power density, specified in large part to satisfy the goal of significatn post-accident passive natural convection cooling; (2) active decay heat removal is preferable as the first line of defense, with passive performance in a backup role; (3) an innovative tube-in-duct fuel assembly, vented to the primpary coolant, appears to be practicable; and (4) use of the S-Co2 GFR to support hydrogen production is a synergistic application, since sufficient energy can be recuperated from the product H2 and 02 to allow the electrolysis cell to run 250 C hotter than the reactor coolant, and the water boilers can be used for reactor decay heat removal. Increasing core poer density is identified as the top priority for future work on GFRs of this type.

Optimized, Competitive Supercritical-CO2 Cycle GFR for Gen IV Service

Optimized, Competitive Supercritical-CO2 Cycle GFR for Gen IV Service PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
An overall plant design was developed for a gas-cooled fast reactor employing a direct supercritical Brayton power conversion system. The most important findings were that (1) the concept could be capital-cost competitive, but startup fuel cycle costs are penalized by the low core power density, specified in large part to satisfy the goal of significatn post-accident passive natural convection cooling; (2) active decay heat removal is preferable as the first line of defense, with passive performance in a backup role; (3) an innovative tube-in-duct fuel assembly, vented to the primpary coolant, appears to be practicable; and (4) use of the S-Co2 GFR to support hydrogen production is a synergistic application, since sufficient energy can be recuperated from the product H2 and 02 to allow the electrolysis cell to run 250 C hotter than the reactor coolant, and the water boilers can be used for reactor decay heat removal. Increasing core poer density is identified as the top priority for future work on GFRs of this type.

Conception and Optimization of Supercritical CO2 Brayton Cycles for Coal-fired Power Plant Application

Conception and Optimization of Supercritical CO2 Brayton Cycles for Coal-fired Power Plant Application PDF Author: Qiao Zhao
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Efficiency enhancement in power plant can be seen as a key lever in front of increasing energy demand. Nowadays, both the attention and the emphasis are directed to reliable alternatives, i.e., enhancing the energy conversion systems. The supercritical CO2 (SC-CO2) Brayton cycle has recently emerged as a promising solution for high efficiency power production in nuclear, fossil-thermal and solar-thermal applications. Currently, studies on such a thermodynamic power cycle are directed towards the demonstration of its reliability and viability before the possible building of an industrial-scale unit. The objectives of this PhD can be divided in two main parts: • A rigorous selection procedure of an equation of state (EoS) for SC-CO2 which permits to assess influences of thermodynamic model on the performance and design of a SC-CO2 Brayton cycle. • A framework of optimization-based synthesis of energy systems which enables optimizing both system structure and the process parameters. The performed investigations demonstrate that the Span-Wagner EoS is recommended for evaluating the performances of a SC-CO2 Brayton cycle in order to avoid inaccurate predictions in terms of equipment sizing and optimization. By combining a commercial process simulator and an evolutionary algorithm (MIDACO), this dissertation has identified a global feasible optimum design -or at least competitive solutions- for a given process superstructure under different industrial constraints. The carried out optimization firstly base on cycle energy aspects, but the decision making for practical systems necessitates techno-economic optimizations. The establishment of associated techno-economic cost functions in the last part of this dissertation enables to assess the levelized cost of electricity (LCOE). The carried out multi-objective optimization reflects the trade-off between economic and energy criteria, but also reveal the potential of this technology in economic performance.

Mass Optimization of a Supercritical CO2 Brayton Cycle with a Direct Cooled Nuclear Reactor for Space Surface Power

Mass Optimization of a Supercritical CO2 Brayton Cycle with a Direct Cooled Nuclear Reactor for Space Surface Power PDF Author: Becky Sondelski
Publisher:
ISBN:
Category :
Languages : en
Pages : 236

Get Book Here

Book Description


Handbook of Generation IV Nuclear Reactors

Handbook of Generation IV Nuclear Reactors PDF Author: Igor Pioro
Publisher: Woodhead Publishing
ISBN: 0128226536
Category : Technology & Engineering
Languages : en
Pages : 1112

Get Book Here

Book Description
Handbook of Generation IV Nuclear Reactors, Second Edition is a fully revised and updated comprehensive resource on the latest research and advances in generation IV nuclear reactor concepts. Editor Igor Pioro and his team of expert contributors have updated every chapter to reflect advances in the field since the first edition published in 2016. The book teaches the reader about available technologies, future prospects and the feasibility of each concept presented, equipping them users with a strong skillset which they can apply to their own work and research. Provides a fully updated, revised and comprehensive handbook dedicated entirely to generation IV nuclear reactors Includes new trends and developments since the first publication, as well as brand new case studies and appendices Covers the latest research, developments and design information surrounding generation IV nuclear reactors

Advanced Power Generation Systems

Advanced Power Generation Systems PDF Author: Ibrahim Dincer
Publisher: Academic Press
ISBN: 0123838614
Category : Technology & Engineering
Languages : en
Pages : 657

Get Book Here

Book Description
Advanced Power Generation Systems examines the full range of advanced multiple output thermodynamic cycles that can enable more sustainable and efficient power production from traditional methods, as well as driving the significant gains available from renewable sources. These advanced cycles can harness the by-products of one power generation effort, such as electricity production, to simultaneously create additional energy outputs, such as heat or refrigeration. Gas turbine-based, and industrial waste heat recovery-based combined, cogeneration, and trigeneration cycles are considered in depth, along with Syngas combustion engines, hybrid SOFC/gas turbine engines, and other thermodynamically efficient and environmentally conscious generation technologies. The uses of solar power, biomass, hydrogen, and fuel cells in advanced power generation are considered, within both hybrid and dedicated systems. The detailed energy and exergy analysis of each type of system provided by globally recognized author Dr. Ibrahim Dincer will inform effective and efficient design choices, while emphasizing the pivotal role of new methodologies and models for performance assessment of existing systems. This unique resource gathers information from thermodynamics, fluid mechanics, heat transfer, and energy system design to provide a single-source guide to solving practical power engineering problems. The only complete source of info on the whole array of multiple output thermodynamic cycles, covering all the design options for environmentally-conscious combined production of electric power, heat, and refrigeration Offers crucial instruction on realizing more efficiency in traditional power generation systems, and on implementing renewable technologies, including solar, hydrogen, fuel cells, and biomass Each cycle description clarified through schematic diagrams, and linked to sustainable development scenarios through detailed energy, exergy, and efficiency analyses Case studies and examples demonstrate how novel systems and performance assessment methods function in practice

Fundamentals and Applications of Supercritical Carbon Dioxide (SCO2) Based Power Cycles

Fundamentals and Applications of Supercritical Carbon Dioxide (SCO2) Based Power Cycles PDF Author: Klaus Brun
Publisher: Woodhead Publishing
ISBN: 0081008058
Category : Technology & Engineering
Languages : en
Pages : 464

Get Book Here

Book Description
Fundamentals and Applications of Supercritical Carbon Dioxide (SCO2) Based Power Cycles aims to provide engineers and researchers with an authoritative overview of research and technology in this area. Part One introduces the technology and reviews the properties of SCO2 relevant to power cycles. Other sections of the book address components for SCO2 power cycles, such as turbomachinery expanders, compressors, recuperators, and design challenges, such as the need for high-temperature materials. Chapters on key applications, including waste heat, nuclear power, fossil energy, geothermal and concentrated solar power are also included. The final section addresses major international research programs. Readers will learn about the attractive features of SC02 power cycles, which include a lower capital cost potential than the traditional cycle, and the compounding performance benefits from a more efficient thermodynamic cycle on balance of plant requirements, fuel use, and emissions. Represents the first book to focus exclusively on SC02 power cycles Contains detailed coverage of cycle fundamentals, key components, and design challenges Addresses the wide range of applications of SC02 power cycles, from more efficient electricity generation, to ship propulsion

Improving Fuel Cycle Design and Safety Characteristics of a Gas Cooled Fast Reactor

Improving Fuel Cycle Design and Safety Characteristics of a Gas Cooled Fast Reactor PDF Author: Willem Frederik Geert van Rooijen
Publisher: IOS Press
ISBN: 9781586036966
Category : Technology & Engineering
Languages : en
Pages : 160

Get Book Here

Book Description
The Generation IV Forum is an international nuclear energy research initiative aimed at developing the fourth generation of nuclear reactors, envisaged to enter service halfway the 21st century. One of the Generation IV reactor systems is the Gas Cooled Fast Reactor (GCFR), the subject of study in this thesis. The Generation IV reactor concepts should improve all aspects of nuclear power generation. Within Generation IV, the GCFR concept specifically targets sustainability of nuclear power generation. The Gas Cooled Fast Reactor core power density is high in comparison to other gas cooled reactor concepts. Like all nuclear reactors, the GCFR produces decay heat after shut down, which has to be transported out of the reactor under all circumstances. The layout of the primary system therefore focuses on using natural convection Decay Heat Removal (DHR) where possible, with a large coolant fraction in the core to reduce friction losses.

The Technological and Economic Future of Nuclear Power

The Technological and Economic Future of Nuclear Power PDF Author: Reinhard Haas
Publisher: Springer
ISBN: 3658259876
Category : Agriculture (General)
Languages : en
Pages : 385

Get Book Here

Book Description
This open access book discusses the eroding economics of nuclear power for electricity generation as well as technical, legal, and political acceptance issues. The use of nuclear power for electricity generation is still a heavily disputed issue. Aside from technical risks, safety issues, and the unsolved problem of nuclear waste disposal, the economic performance is currently a major barrier. In recent years, the costs have skyrocketed especially in the European countries and North America. At the same time, the costs of alternatives such as photovoltaics and wind power have significantly decreased. Contents History and Current Status of the World Nuclear Industry The Dramatic Decrease of the Economics of Nuclear Power Nuclear Policy in the EU The Legacy of Csernobyl and Fukushima Nuclear Waste and Decommissioning of Nuclear Power Plants Alternatives: Heading Towards Sustainable Electricity Systems Target Groups Researchers and students in the fields of political, economic and technical sciences Energy (policy) experts, nuclear energy experts and practitioners, economists, engineers, consultants, civil society organizations The Editors Prof. Dr. Reinhard Haas is University Professor of energy economics at the Institute of Energy Systems and Electric Drives at Technische Universität Wien, Austria. PD Dr. Lutz Mez is Associate Professor at the Department for Political and Social Sciences of Freie Universität Berlin, Germany. PD Dr. Amela Ajanovic is a senior researcher and lecturer at the Institute of Energy Systems and Electrical Drives at Technische Universität Wien, Austria.--

Effect of Operating Parameters on Net Power Output of a 2- to 10-kilowatt Brayton Rotating Unit

Effect of Operating Parameters on Net Power Output of a 2- to 10-kilowatt Brayton Rotating Unit PDF Author:
Publisher:
ISBN:
Category : Brayton cycle
Languages : en
Pages : 28

Get Book Here

Book Description


Evaluation of Coolants and Moderators for the Maritime Gas-cooled Reactor

Evaluation of Coolants and Moderators for the Maritime Gas-cooled Reactor PDF Author:
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 478

Get Book Here

Book Description