Nonlinear and Optimal Control Systems

Nonlinear and Optimal Control Systems PDF Author: Thomas L. Vincent
Publisher: John Wiley & Sons
ISBN: 9780471042358
Category : Science
Languages : en
Pages : 584

Get Book

Book Description
Designed for one-semester introductory senior-or graduate-level course, the authors provide the student with an introduction of analysis techniques used in the design of nonlinear and optimal feedback control systems. There is special emphasis on the fundamental topics of stability, controllability, and optimality, and on the corresponding geometry associated with these topics. Each chapter contains several examples and a variety of exercises.

Nonlinear and Optimal Control Systems

Nonlinear and Optimal Control Systems PDF Author: Thomas L. Vincent
Publisher: John Wiley & Sons
ISBN: 9780471042358
Category : Science
Languages : en
Pages : 584

Get Book

Book Description
Designed for one-semester introductory senior-or graduate-level course, the authors provide the student with an introduction of analysis techniques used in the design of nonlinear and optimal feedback control systems. There is special emphasis on the fundamental topics of stability, controllability, and optimality, and on the corresponding geometry associated with these topics. Each chapter contains several examples and a variety of exercises.

Optimization and Control of Dynamic Systems

Optimization and Control of Dynamic Systems PDF Author: Henryk Górecki
Publisher: Springer
ISBN: 3319626469
Category : Technology & Engineering
Languages : en
Pages : 666

Get Book

Book Description
This book offers a comprehensive presentation of optimization and polyoptimization methods. The examples included are taken from various domains: mechanics, electrical engineering, economy, informatics, and automatic control, making the book especially attractive. With the motto “from general abstraction to practical examples,” it presents the theory and applications of optimization step by step, from the function of one variable and functions of many variables with constraints, to infinite dimensional problems (calculus of variations), a continuation of which are optimization methods of dynamical systems, that is, dynamic programming and the maximum principle, and finishing with polyoptimization methods. It includes numerous practical examples, e.g., optimization of hierarchical systems, optimization of time-delay systems, rocket stabilization modeled by balancing a stick on a finger, a simplified version of the journey to the moon, optimization of hybrid systems and of the electrical long transmission line, analytical determination of extremal errors in dynamical systems of the rth order, multicriteria optimization with safety margins (the skeleton method), and ending with a dynamic model of bicycle. The book is aimed at readers who wish to study modern optimization methods, from problem formulation and proofs to practical applications illustrated by inspiring concrete examples.

Linear Control Theory

Linear Control Theory PDF Author: Shankar P. Bhattacharyya
Publisher: CRC Press
ISBN: 1351837079
Category : Technology & Engineering
Languages : en
Pages : 679

Get Book

Book Description
Successfully classroom-tested at the graduate level, Linear Control Theory: Structure, Robustness, and Optimization covers three major areas of control engineering (PID control, robust control, and optimal control). It provides balanced coverage of elegant mathematical theory and useful engineering-oriented results. The first part of the book develops results relating to the design of PID and first-order controllers for continuous and discrete-time linear systems with possible delays. The second section deals with the robust stability and performance of systems under parametric and unstructured uncertainty. This section describes several elegant and sharp results, such as Kharitonov’s theorem and its extensions, the edge theorem, and the mapping theorem. Focusing on the optimal control of linear systems, the third part discusses the standard theories of the linear quadratic regulator, Hinfinity and l1 optimal control, and associated results. Written by recognized leaders in the field, this book explains how control theory can be applied to the design of real-world systems. It shows that the techniques of three term controllers, along with the results on robust and optimal control, are invaluable to developing and solving research problems in many areas of engineering.

Optimization Theory and the Design of Feedback Control Systems

Optimization Theory and the Design of Feedback Control Systems PDF Author: Charles Wolcott Merriam
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 424

Get Book

Book Description


Linear Control Theory

Linear Control Theory PDF Author: Shankar P. Bhattacharyya
Publisher: CRC Press
ISBN: 1420019619
Category : Technology & Engineering
Languages : en
Pages : 924

Get Book

Book Description
Successfully classroom-tested at the graduate level, Linear Control Theory: Structure, Robustness, and Optimization covers three major areas of control engineering (PID control, robust control, and optimal control). It provides balanced coverage of elegant mathematical theory and useful engineering-oriented results. The first part of the book develops results relating to the design of PID and first-order controllers for continuous and discrete-time linear systems with possible delays. The second section deals with the robust stability and performance of systems under parametric and unstructured uncertainty. This section describes several elegant and sharp results, such as Kharitonov’s theorem and its extensions, the edge theorem, and the mapping theorem. Focusing on the optimal control of linear systems, the third part discusses the standard theories of the linear quadratic regulator, Hinfinity and l1 optimal control, and associated results. Written by recognized leaders in the field, this book explains how control theory can be applied to the design of real-world systems. It shows that the techniques of three term controllers, along with the results on robust and optimal control, are invaluable to developing and solving research problems in many areas of engineering.

Advanced Optimization for Motion Control Systems

Advanced Optimization for Motion Control Systems PDF Author: Jun Ma
Publisher: CRC Press
ISBN: 1000037118
Category : Technology & Engineering
Languages : en
Pages : 183

Get Book

Book Description
Precision motion control is strongly required in many fields, such as precision engineering, micromanufacturing, biotechnology, and nanotechnology. Although great achievements have been made in control engineering, it is still challenging to fulfill the desired performance for precision motion control systems. Substantial works have been presented to reveal an increasing trend to apply optimization approaches in precision engineering to obtain the control system parameters. In this book, we present a result of several years of work in the area of advanced optimization for motion control systems. The book is organized into two parts: Part I focuses on the model-based approaches, and Part II presents the data-based approaches. To illustrate the practical appeal of the proposed optimization techniques, theoretical results are verified with practical examples in each chapter. Industrial problems explored in the book are formulated systematically with necessary analysis of the control system synthesis. By virtue of the design and implementation nature, this book can be used as a reference for engineers, researchers, and students who want to utilize control theories to solve the practical control problems. As the methodologies have extensive applicability in many control engineering problems, the research results in the field of optimization can be applied to full-fledged industrial processes, filling in the gap between research and application to achieve a technology frontier increment.

Introduction to Linear Control Systems

Introduction to Linear Control Systems PDF Author: Yazdan Bavafa-Toosi
Publisher: Academic Press
ISBN: 012812749X
Category : Technology & Engineering
Languages : en
Pages : 1135

Get Book

Book Description
Introduction to Linear Control Systems is designed as a standard introduction to linear control systems for all those who one way or another deal with control systems. It can be used as a comprehensive up-to-date textbook for a one-semester 3-credit undergraduate course on linear control systems as the first course on this topic at university. This includes the faculties of electrical engineering, mechanical engineering, aerospace engineering, chemical and petroleum engineering, industrial engineering, civil engineering, bio-engineering, economics, mathematics, physics, management and social sciences, etc. The book covers foundations of linear control systems, their raison detre, different types, modelling, representations, computations, stability concepts, tools for time-domain and frequency-domain analysis and synthesis, and fundamental limitations, with an emphasis on frequency-domain methods. Every chapter includes a part on further readings where more advanced topics and pertinent references are introduced for further studies. The presentation is theoretically firm, contemporary, and self-contained. Appendices cover Laplace transform and differential equations, dynamics, MATLAB and SIMULINK, treatise on stability concepts and tools, treatise on Routh-Hurwitz method, random optimization techniques as well as convex and non-convex problems, and sample midterm and endterm exams. The book is divided to the sequel 3 parts plus appendices. PART I: In this part of the book, chapters 1-5, we present foundations of linear control systems. This includes: the introduction to control systems, their raison detre, their different types, modelling of control systems, different methods for their representation and fundamental computations, basic stability concepts and tools for both analysis and design, basic time domain analysis and design details, and the root locus as a stability analysis and synthesis tool. PART II: In this part of the book, Chapters 6-9, we present what is generally referred to as the frequency domain methods. This refers to the experiment of applying a sinusoidal input to the system and studying its output. There are basically three different methods for representation and studying of the data of the aforementioned frequency response experiment: these are the Nyquist plot, the Bode diagram, and the Krohn-Manger-Nichols chart. We study these methods in details. We learn that the output is also a sinusoid with the same frequency but generally with different phase and magnitude. By dividing the output by the input we obtain the so-called sinusoidal or frequency transfer function of the system which is the same as the transfer function when the Laplace variable s is substituted with . Finally we use the Bode diagram for the design process. PART III: In this part, Chapter 10, we introduce some miscellaneous advanced topics under the theme fundamental limitations which should be included in this undergraduate course at least in an introductory level. We make bridges between some seemingly disparate aspects of a control system and theoretically complement the previously studied subjects. Appendices: The book contains seven appendices. Appendix A is on the Laplace transform and differential equations. Appendix B is an introduction to dynamics. Appendix C is an introduction to MATLAB, including SIMULINK. Appendix D is a survey on stability concepts and tools. A glossary and road map of the available stability concepts and tests is provided which is missing even in the research literature. Appendix E is a survey on the Routh-Hurwitz method, also missing in the literature. Appendix F is an introduction to random optimization techniques and convex and non-convex problems. Finally, appendix G presents sample midterm and endterm exams, which are class-tested several times.

Optimization of Linear Control Systems

Optimization of Linear Control Systems PDF Author: F A Aliev
Publisher: CRC Press
ISBN: 9789056991135
Category : Mathematics
Languages : en
Pages : 276

Get Book

Book Description
The authors present analytical methods for synthesis of linear stationary and periodical optimal controlled systems, and create effective computational algorithms for synthesis of optimal regulators and filters. The procedures of Youla-Jabr-Bongiorno (1976) and Desoer-Lin-Murray-Saeks (1980) are special cases of this procedure. The monograph also includes original computational algorithms (solutions of usual and generalized Lyapunov and Riccati equations, polynomial matrix factorization) and illustrates the effectiveness of these algorithms by examples in the field of numerical methods for optimization of linear controlled systems.

Stochastic Distribution Control System Design

Stochastic Distribution Control System Design PDF Author: Lei Guo
Publisher: Springer Science & Business Media
ISBN: 1849960305
Category : Technology & Engineering
Languages : en
Pages : 201

Get Book

Book Description
A recent development in SDC-related problems is the establishment of intelligent SDC models and the intensive use of LMI-based convex optimization methods. Within this theoretical framework, control parameter determination can be designed and stability and robustness of closed-loop systems can be analyzed. This book describes the new framework of SDC system design and provides a comprehensive description of the modelling of controller design tools and their real-time implementation. It starts with a review of current research on SDC and moves on to some basic techniques for modelling and controller design of SDC systems. This is followed by a description of controller design for fixed-control-structure SDC systems, PDF control for general input- and output-represented systems, filtering designs, and fault detection and diagnosis (FDD) for SDC systems. Many new LMI techniques being developed for SDC systems are shown to have independent theoretical significance for robust control and FDD problems.

Kalman Filtering

Kalman Filtering PDF Author: Charles K. Chui
Publisher: Springer Science & Business Media
ISBN: 366202666X
Category : Science
Languages : en
Pages : 209

Get Book

Book Description
In addition to making a number of minor corrections and updat ing the references, we have expanded the section on "real-time system identification" in Chapter 10 of the first edition into two sections and combined it with Chapter 8. In its place, a very brief introduction to wavelet analysis is included in Chapter 10. Although the pyramid algorithms for wavelet decompositions and reconstructions are quite different from the Kalman filtering al gorithms, they can also be applied to time-domain filtering, and it is hoped that splines and wavelets can be incorporated with Kalman filtering in the near future. College Station and Houston Charles K. Chui September 1990 Guanrong Chen Preface to the First Edition Kalman filtering is an optimal state estimation process applied to a dynamic system that involves random perturbations. More precisely, the Kalman filter gives a linear, unbiased, and min imum error variance recursive algorithm to optimally estimate the unknown state of a dynamic system from noisy data taken at discrete real-time. It has been widely used in many areas of industrial and government applications such as video and laser tracking systems, satellite navigation, ballistic missile trajectory estimation, radar, and fire control. With the recent development of high-speed computers, the Kalman filter has become more use ful even for very complicated real-time applications.