Author: Hocine Cherifi
Publisher: Springer Nature
ISBN: 3031534689
Category : Computational intelligence
Languages : en
Pages : 483
Book Description
Zusammenfassung: This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students and practitioners a unique update on the latest advances in theory and a multitude of applications. It presents the peer-reviewed proceedings of the XII International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2023). The carefully selected papers cover a wide range of theoretical topics such as network embedding and network geometry; community structure, network dynamics; diffusion, epidemics and spreading processes; machine learning and graph neural networks as well as all the main network applications, including social and political networks; networks in finance and economics; biological networks and technological networks
Advanced Methods for Complex Network Analysis
Author: Meghanathan, Natarajan
Publisher: IGI Global
ISBN: 1466699655
Category : Computers
Languages : en
Pages : 484
Book Description
As network science and technology continues to gain popularity, it becomes imperative to develop procedures to examine emergent network domains, as well as classical networks, to help ensure their overall optimization. Advanced Methods for Complex Network Analysis features the latest research on the algorithms and analysis measures being employed in the field of network science. Highlighting the application of graph models, advanced computation, and analytical procedures, this publication is a pivotal resource for students, faculty, industry practitioners, and business professionals interested in theoretical concepts and current developments in network domains.
Publisher: IGI Global
ISBN: 1466699655
Category : Computers
Languages : en
Pages : 484
Book Description
As network science and technology continues to gain popularity, it becomes imperative to develop procedures to examine emergent network domains, as well as classical networks, to help ensure their overall optimization. Advanced Methods for Complex Network Analysis features the latest research on the algorithms and analysis measures being employed in the field of network science. Highlighting the application of graph models, advanced computation, and analytical procedures, this publication is a pivotal resource for students, faculty, industry practitioners, and business professionals interested in theoretical concepts and current developments in network domains.
Complex Networks & Their Applications XII
Author: Hocine Cherifi
Publisher: Springer Nature
ISBN: 3031534689
Category : Computational intelligence
Languages : en
Pages : 483
Book Description
Zusammenfassung: This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students and practitioners a unique update on the latest advances in theory and a multitude of applications. It presents the peer-reviewed proceedings of the XII International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2023). The carefully selected papers cover a wide range of theoretical topics such as network embedding and network geometry; community structure, network dynamics; diffusion, epidemics and spreading processes; machine learning and graph neural networks as well as all the main network applications, including social and political networks; networks in finance and economics; biological networks and technological networks
Publisher: Springer Nature
ISBN: 3031534689
Category : Computational intelligence
Languages : en
Pages : 483
Book Description
Zusammenfassung: This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students and practitioners a unique update on the latest advances in theory and a multitude of applications. It presents the peer-reviewed proceedings of the XII International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2023). The carefully selected papers cover a wide range of theoretical topics such as network embedding and network geometry; community structure, network dynamics; diffusion, epidemics and spreading processes; machine learning and graph neural networks as well as all the main network applications, including social and political networks; networks in finance and economics; biological networks and technological networks
Online Social Networks in Business Frameworks
Author: Sudhir Kumar Rathi
Publisher: John Wiley & Sons
ISBN: 1394231105
Category : Business & Economics
Languages : en
Pages : 551
Book Description
This book presents a vital method for companies to connect with potential clients andconsumers in the digital era of Online Social Networks (OSNs), utilizing the strengthof well-known social networks and AI to achieve success through fostering brandsupporters, generating leads, and enhancing customer interactions. There are currently 4.8 billion Online Social Network (OSN) users worldwide. Online Social Networks in Business Frameworks presents marketing through online social networks (OSNs), which is a potent method for companies of all sizes to connect with potential clients and consumers. If visitors are not on OSN sites like Facebook, Twitter, and LinkedIn, they are missing out on the fact that people discover, learn about, follow, and purchase from companies on OSNs. Excellent OSN advertising may help a company achieve amazing success by fostering committed brand supporters and even generating leads and revenue. A type of digital advertising known as social media marketing (SMM) makes use of the strength of well-known social networks to further advertise and establish branding objectives. Nevertheless, it goes beyond simply setting up company accounts and tweeting whenever visitors feel like it. Preserving and improving profiles means posting content that represents the company and draws in the right audience, such as images, videos, articles, and live videos, addressing comments, shares, and likes while keeping an eye on the reputation to create a brand network, and following and interacting with followers, clients, and influencers.
Publisher: John Wiley & Sons
ISBN: 1394231105
Category : Business & Economics
Languages : en
Pages : 551
Book Description
This book presents a vital method for companies to connect with potential clients andconsumers in the digital era of Online Social Networks (OSNs), utilizing the strengthof well-known social networks and AI to achieve success through fostering brandsupporters, generating leads, and enhancing customer interactions. There are currently 4.8 billion Online Social Network (OSN) users worldwide. Online Social Networks in Business Frameworks presents marketing through online social networks (OSNs), which is a potent method for companies of all sizes to connect with potential clients and consumers. If visitors are not on OSN sites like Facebook, Twitter, and LinkedIn, they are missing out on the fact that people discover, learn about, follow, and purchase from companies on OSNs. Excellent OSN advertising may help a company achieve amazing success by fostering committed brand supporters and even generating leads and revenue. A type of digital advertising known as social media marketing (SMM) makes use of the strength of well-known social networks to further advertise and establish branding objectives. Nevertheless, it goes beyond simply setting up company accounts and tweeting whenever visitors feel like it. Preserving and improving profiles means posting content that represents the company and draws in the right audience, such as images, videos, articles, and live videos, addressing comments, shares, and likes while keeping an eye on the reputation to create a brand network, and following and interacting with followers, clients, and influencers.
Machine Learning in Complex Networks
Author: Thiago Christiano Silva
Publisher: Springer
ISBN: 3319172905
Category : Computers
Languages : en
Pages : 345
Book Description
This book presents the features and advantages offered by complex networks in the machine learning domain. In the first part, an overview on complex networks and network-based machine learning is presented, offering necessary background material. In the second part, we describe in details some specific techniques based on complex networks for supervised, non-supervised, and semi-supervised learning. Particularly, a stochastic particle competition technique for both non-supervised and semi-supervised learning using a stochastic nonlinear dynamical system is described in details. Moreover, an analytical analysis is supplied, which enables one to predict the behavior of the proposed technique. In addition, data reliability issues are explored in semi-supervised learning. Such matter has practical importance and is not often found in the literature. With the goal of validating these techniques for solving real problems, simulations on broadly accepted databases are conducted. Still in this book, we present a hybrid supervised classification technique that combines both low and high orders of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features, while the latter measures the compliance of the test instances with the pattern formation of the data. We show that the high level technique can realize classification according to the semantic meaning of the data. This book intends to combine two widely studied research areas, machine learning and complex networks, which in turn will generate broad interests to scientific community, mainly to computer science and engineering areas.
Publisher: Springer
ISBN: 3319172905
Category : Computers
Languages : en
Pages : 345
Book Description
This book presents the features and advantages offered by complex networks in the machine learning domain. In the first part, an overview on complex networks and network-based machine learning is presented, offering necessary background material. In the second part, we describe in details some specific techniques based on complex networks for supervised, non-supervised, and semi-supervised learning. Particularly, a stochastic particle competition technique for both non-supervised and semi-supervised learning using a stochastic nonlinear dynamical system is described in details. Moreover, an analytical analysis is supplied, which enables one to predict the behavior of the proposed technique. In addition, data reliability issues are explored in semi-supervised learning. Such matter has practical importance and is not often found in the literature. With the goal of validating these techniques for solving real problems, simulations on broadly accepted databases are conducted. Still in this book, we present a hybrid supervised classification technique that combines both low and high orders of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features, while the latter measures the compliance of the test instances with the pattern formation of the data. We show that the high level technique can realize classification according to the semantic meaning of the data. This book intends to combine two widely studied research areas, machine learning and complex networks, which in turn will generate broad interests to scientific community, mainly to computer science and engineering areas.
Big Data of Complex Networks
Author: Matthias Dehmer
Publisher: CRC Press
ISBN: 1315353598
Category : Computers
Languages : en
Pages : 290
Book Description
Big Data of Complex Networks presents and explains the methods from the study of big data that can be used in analysing massive structural data sets, including both very large networks and sets of graphs. As well as applying statistical analysis techniques like sampling and bootstrapping in an interdisciplinary manner to produce novel techniques for analyzing massive amounts of data, this book also explores the possibilities offered by the special aspects such as computer memory in investigating large sets of complex networks. Intended for computer scientists, statisticians and mathematicians interested in the big data and networks, Big Data of Complex Networks is also a valuable tool for researchers in the fields of visualization, data analysis, computer vision and bioinformatics. Key features: Provides a complete discussion of both the hardware and software used to organize big data Describes a wide range of useful applications for managing big data and resultant data sets Maintains a firm focus on massive data and large networks Unveils innovative techniques to help readers handle big data Matthias Dehmer received his PhD in computer science from the Darmstadt University of Technology, Germany. Currently, he is Professor at UMIT – The Health and Life Sciences University, Austria, and the Universität der Bundeswehr München. His research interests are in graph theory, data science, complex networks, complexity, statistics and information theory. Frank Emmert-Streib received his PhD in theoretical physics from the University of Bremen, and is currently Associate professor at Tampere University of Technology, Finland. His research interests are in the field of computational biology, machine learning and network medicine. Stefan Pickl holds a PhD in mathematics from the Darmstadt University of Technology, and is currently a Professor at Bundeswehr Universität München. His research interests are in operations research, systems biology, graph theory and discrete optimization. Andreas Holzinger received his PhD in cognitive science from Graz University and his habilitation (second PhD) in computer science from Graz University of Technology. He is head of the Holzinger Group HCI-KDD at the Medical University Graz and Visiting Professor for Machine Learning in Health Informatics Vienna University of Technology.
Publisher: CRC Press
ISBN: 1315353598
Category : Computers
Languages : en
Pages : 290
Book Description
Big Data of Complex Networks presents and explains the methods from the study of big data that can be used in analysing massive structural data sets, including both very large networks and sets of graphs. As well as applying statistical analysis techniques like sampling and bootstrapping in an interdisciplinary manner to produce novel techniques for analyzing massive amounts of data, this book also explores the possibilities offered by the special aspects such as computer memory in investigating large sets of complex networks. Intended for computer scientists, statisticians and mathematicians interested in the big data and networks, Big Data of Complex Networks is also a valuable tool for researchers in the fields of visualization, data analysis, computer vision and bioinformatics. Key features: Provides a complete discussion of both the hardware and software used to organize big data Describes a wide range of useful applications for managing big data and resultant data sets Maintains a firm focus on massive data and large networks Unveils innovative techniques to help readers handle big data Matthias Dehmer received his PhD in computer science from the Darmstadt University of Technology, Germany. Currently, he is Professor at UMIT – The Health and Life Sciences University, Austria, and the Universität der Bundeswehr München. His research interests are in graph theory, data science, complex networks, complexity, statistics and information theory. Frank Emmert-Streib received his PhD in theoretical physics from the University of Bremen, and is currently Associate professor at Tampere University of Technology, Finland. His research interests are in the field of computational biology, machine learning and network medicine. Stefan Pickl holds a PhD in mathematics from the Darmstadt University of Technology, and is currently a Professor at Bundeswehr Universität München. His research interests are in operations research, systems biology, graph theory and discrete optimization. Andreas Holzinger received his PhD in cognitive science from Graz University and his habilitation (second PhD) in computer science from Graz University of Technology. He is head of the Holzinger Group HCI-KDD at the Medical University Graz and Visiting Professor for Machine Learning in Health Informatics Vienna University of Technology.
Algorithms and Models for Network Data and Link Analysis
Author: François Fouss
Publisher: Cambridge University Press
ISBN: 1316712516
Category : Computers
Languages : en
Pages : 549
Book Description
Network data are produced automatically by everyday interactions - social networks, power grids, and links between data sets are a few examples. Such data capture social and economic behavior in a form that can be analyzed using powerful computational tools. This book is a guide to both basic and advanced techniques and algorithms for extracting useful information from network data. The content is organized around 'tasks', grouping the algorithms needed to gather specific types of information and thus answer specific types of questions. Examples include similarity between nodes in a network, prestige or centrality of individual nodes, and dense regions or communities in a network. Algorithms are derived in detail and summarized in pseudo-code. The book is intended primarily for computer scientists, engineers, statisticians and physicists, but it is also accessible to network scientists based in the social sciences. MATLAB®/Octave code illustrating some of the algorithms will be available at: http://www.cambridge.org/9781107125773.
Publisher: Cambridge University Press
ISBN: 1316712516
Category : Computers
Languages : en
Pages : 549
Book Description
Network data are produced automatically by everyday interactions - social networks, power grids, and links between data sets are a few examples. Such data capture social and economic behavior in a form that can be analyzed using powerful computational tools. This book is a guide to both basic and advanced techniques and algorithms for extracting useful information from network data. The content is organized around 'tasks', grouping the algorithms needed to gather specific types of information and thus answer specific types of questions. Examples include similarity between nodes in a network, prestige or centrality of individual nodes, and dense regions or communities in a network. Algorithms are derived in detail and summarized in pseudo-code. The book is intended primarily for computer scientists, engineers, statisticians and physicists, but it is also accessible to network scientists based in the social sciences. MATLAB®/Octave code illustrating some of the algorithms will be available at: http://www.cambridge.org/9781107125773.
Artificial Intelligence Application in Networks and Systems
Author: Radek Silhavy
Publisher: Springer Nature
ISBN: 3031353145
Category : Technology & Engineering
Languages : en
Pages : 854
Book Description
The application of artificial intelligence in networks and systems is a rapidly evolving field that has the potential to transform a wide range of industries. The refereed proceedings in this book is from the Artificial Intelligence Application in Networks and Systems session of the Computer Science Online Conference 2023 (CSOC 2023), which was held online in April 2023. The section brings together experts from different fields to present their research and discuss the latest trends and challenges. One of the key themes in this section is the development of intelligent systems that can learn, adapt, and optimize their performance in real time. Researchers are exploring how AI algorithms can be used to create autonomous networks and systems that can make decisions without human intervention. Furthermore, this section highlights the use of AI in improving network performance and efficiency. Researchers are exploring how AI algorithms can be used to optimize network routing, reduce congestion, and improve the quality of service. These efforts can help organizations save costs and improve user experience.
Publisher: Springer Nature
ISBN: 3031353145
Category : Technology & Engineering
Languages : en
Pages : 854
Book Description
The application of artificial intelligence in networks and systems is a rapidly evolving field that has the potential to transform a wide range of industries. The refereed proceedings in this book is from the Artificial Intelligence Application in Networks and Systems session of the Computer Science Online Conference 2023 (CSOC 2023), which was held online in April 2023. The section brings together experts from different fields to present their research and discuss the latest trends and challenges. One of the key themes in this section is the development of intelligent systems that can learn, adapt, and optimize their performance in real time. Researchers are exploring how AI algorithms can be used to create autonomous networks and systems that can make decisions without human intervention. Furthermore, this section highlights the use of AI in improving network performance and efficiency. Researchers are exploring how AI algorithms can be used to optimize network routing, reduce congestion, and improve the quality of service. These efforts can help organizations save costs and improve user experience.
Automated Machine Learning
Author: Frank Hutter
Publisher: Springer
ISBN: 3030053180
Category : Computers
Languages : en
Pages : 223
Book Description
This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.
Publisher: Springer
ISBN: 3030053180
Category : Computers
Languages : en
Pages : 223
Book Description
This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.
Advancing Intelligent Networks Through Distributed Optimization
Author: Rajest, S. Suman
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 618
Book Description
The numerous developments in wireless communications and artificial intelligence (AI) have recently transformed the Internet of Things (IoT) networks to a level of connectivity and intelligence beyond any prior design. This topology is sharply exemplified in mobile edge computing, smart cities, smart homes, smart grids, and the IoT, among many other intelligent applications. Intelligent networks are founded on integrating caching and multi-agent systems that optimize data storage and the entire devices learning process. However, a central node through which all agents transmit status messages and reward information is a major drawback of this design pattern. This central node condition instigates more communication overhead, potential data leakage, and the birth of data islands. To reverse this trend, using distributed optimization techniques and methodologies in cache-enabled multi-agent learning environments is increasingly beneficial. Advancing Intelligent Networks Through Distributed Optimization explains the current race for sophisticated and accurate distributed optimization in cache-enabled intelligent IoT networks given the need to make multi-agent learning converge faster and reduce communication overhead. These techniques will require innovative resource allocation strategies stretching from system training to caching, communication, and processing amongst millions of agents. This book combines the key recent research in these races into a single binder that can serve all the interested theoretical and practical scholars. The book focuses broadly on intelligent systems optimization trends. It identifies the various applications of advanced distributed optimization from manufacturing to medicine, agriculture and smart cities.
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 618
Book Description
The numerous developments in wireless communications and artificial intelligence (AI) have recently transformed the Internet of Things (IoT) networks to a level of connectivity and intelligence beyond any prior design. This topology is sharply exemplified in mobile edge computing, smart cities, smart homes, smart grids, and the IoT, among many other intelligent applications. Intelligent networks are founded on integrating caching and multi-agent systems that optimize data storage and the entire devices learning process. However, a central node through which all agents transmit status messages and reward information is a major drawback of this design pattern. This central node condition instigates more communication overhead, potential data leakage, and the birth of data islands. To reverse this trend, using distributed optimization techniques and methodologies in cache-enabled multi-agent learning environments is increasingly beneficial. Advancing Intelligent Networks Through Distributed Optimization explains the current race for sophisticated and accurate distributed optimization in cache-enabled intelligent IoT networks given the need to make multi-agent learning converge faster and reduce communication overhead. These techniques will require innovative resource allocation strategies stretching from system training to caching, communication, and processing amongst millions of agents. This book combines the key recent research in these races into a single binder that can serve all the interested theoretical and practical scholars. The book focuses broadly on intelligent systems optimization trends. It identifies the various applications of advanced distributed optimization from manufacturing to medicine, agriculture and smart cities.
A Wavelet Tour of Signal Processing
Author: Stephane Mallat
Publisher: Elsevier
ISBN: 0080520839
Category : Computers
Languages : en
Pages : 663
Book Description
This book is intended to serve as an invaluable reference for anyone concerned with the application of wavelets to signal processing. It has evolved from material used to teach "wavelet signal processing" courses in electrical engineering departments at Massachusetts Institute of Technology and Tel Aviv University, as well as applied mathematics departments at the Courant Institute of New York University and ÉcolePolytechnique in Paris. - Provides a broad perspective on the principles and applications of transient signal processing with wavelets - Emphasizes intuitive understanding, while providing the mathematical foundations and description of fast algorithms - Numerous examples of real applications to noise removal, deconvolution, audio and image compression, singularity and edge detection, multifractal analysis, and time-varying frequency measurements - Algorithms and numerical examples are implemented in Wavelab, which is a Matlab toolbox freely available over the Internet - Content is accessible on several level of complexity, depending on the individual reader's needs New to the Second Edition - Optical flow calculation and video compression algorithms - Image models with bounded variation functions - Bayes and Minimax theories for signal estimation - 200 pages rewritten and most illustrations redrawn - More problems and topics for a graduate course in wavelet signal processing, in engineering and applied mathematics
Publisher: Elsevier
ISBN: 0080520839
Category : Computers
Languages : en
Pages : 663
Book Description
This book is intended to serve as an invaluable reference for anyone concerned with the application of wavelets to signal processing. It has evolved from material used to teach "wavelet signal processing" courses in electrical engineering departments at Massachusetts Institute of Technology and Tel Aviv University, as well as applied mathematics departments at the Courant Institute of New York University and ÉcolePolytechnique in Paris. - Provides a broad perspective on the principles and applications of transient signal processing with wavelets - Emphasizes intuitive understanding, while providing the mathematical foundations and description of fast algorithms - Numerous examples of real applications to noise removal, deconvolution, audio and image compression, singularity and edge detection, multifractal analysis, and time-varying frequency measurements - Algorithms and numerical examples are implemented in Wavelab, which is a Matlab toolbox freely available over the Internet - Content is accessible on several level of complexity, depending on the individual reader's needs New to the Second Edition - Optical flow calculation and video compression algorithms - Image models with bounded variation functions - Bayes and Minimax theories for signal estimation - 200 pages rewritten and most illustrations redrawn - More problems and topics for a graduate course in wavelet signal processing, in engineering and applied mathematics