Neural Dynamic Trajectory Design for Reentry Vehicles

Neural Dynamic Trajectory Design for Reentry Vehicles PDF Author: Ajay Verma
Publisher:
ISBN:
Category : Guided missiles
Languages : en
Pages : 14

Get Book Here

Book Description
The next generation of reentry vehicles is envisioned to have onboard autonomous capability of real-time trajectory planning to provide capability of responsive launch and delivering payload anywhere with precise flight termination. This capability is also desired to overcome, if possible, in-flight vehicle damage or control effector failure resulting in degraded vehicle performance. An aerial vehicle is modeled as a nonlinear multi-input-multi-output (MIMO) system. An ideal optimal trajectory control design system generates a series of control commands to achieve a desired trajectory under various disturbances and vehicle model uncertainties including aerodynamic perturbations caused by geometric damage to the vehicle. Conventional approaches suffer from the nonlinearity of the MIMO system, and the high-dimensionality of the system state space. In this paper, we apply a Neural Dynamic Optimization (NDO) based approach to overcome these difficulties. The core of an NDO model is a multilayer perceptron (MLP) neural network, which generates the control parameters online. The advantage of the NDO system is that it is very fast and gives the trajectory almost instantaneously. The bulk of the time consuming computation is required only during off-line training. The inputs of the MLP are the time-variant states of the MIMO systems. The outputs of the MLP are the near optimal control parameters.

Neural Dynamic Trajectory Design for Reentry Vehicles

Neural Dynamic Trajectory Design for Reentry Vehicles PDF Author: Ajay Verma
Publisher:
ISBN:
Category : Guided missiles
Languages : en
Pages : 14

Get Book Here

Book Description
The next generation of reentry vehicles is envisioned to have onboard autonomous capability of real-time trajectory planning to provide capability of responsive launch and delivering payload anywhere with precise flight termination. This capability is also desired to overcome, if possible, in-flight vehicle damage or control effector failure resulting in degraded vehicle performance. An aerial vehicle is modeled as a nonlinear multi-input-multi-output (MIMO) system. An ideal optimal trajectory control design system generates a series of control commands to achieve a desired trajectory under various disturbances and vehicle model uncertainties including aerodynamic perturbations caused by geometric damage to the vehicle. Conventional approaches suffer from the nonlinearity of the MIMO system, and the high-dimensionality of the system state space. In this paper, we apply a Neural Dynamic Optimization (NDO) based approach to overcome these difficulties. The core of an NDO model is a multilayer perceptron (MLP) neural network, which generates the control parameters online. The advantage of the NDO system is that it is very fast and gives the trajectory almost instantaneously. The bulk of the time consuming computation is required only during off-line training. The inputs of the MLP are the time-variant states of the MIMO systems. The outputs of the MLP are the near optimal control parameters.

Integrated Design for Space Transportation System

Integrated Design for Space Transportation System PDF Author: B.N. Suresh
Publisher: Springer
ISBN: 8132225325
Category : Technology & Engineering
Languages : en
Pages : 792

Get Book Here

Book Description
The book addresses the overall integrated design aspects of a space transportation system involving several disciplines like propulsion, vehicle structures, aerodynamics, flight mechanics, navigation, guidance and control systems, stage auxiliary systems, thermal systems etc. and discusses the system approach for design, trade off analysis, system life cycle considerations, important aspects in mission management, the risk assessment, etc. There are several books authored to describe the design aspects of various areas, viz., propulsion, aerodynamics, structures, control, etc., but there is no book which presents space transportation system (STS) design in an integrated manner. This book attempts to fill this gap by addressing systems approach for STS design, highlighting the integrated design aspects, interactions between various subsystems and interdependencies. The main focus is towards the complex integrated design to arrive at an optimum, robust and cost effective space transportation system. The orbital mechanics of satellites including different coordinate frames, orbital perturbations and orbital transfers are explained. For launching the satellites to meet specific mission requirements, viz., payload/orbit, design considerations, giving step by step procedure are briefed. The selection methodology for launch vehicle configuration, its optimum staging and the factors which influence the vehicle performance are summarized. The influence of external, internal and dynamic operating environments experienced by the vehicle subsystems and the remedial measures needed are highlighted. The mission design strategies and their influence on the vehicle design process are elaborated. The various critical aspects of STS subsystems like flight mechanics, propulsion, structures and materials, thermal systems, stage auxiliary systems, navigation, guidance and control and the interdependencies and interactions between them are covered. The design guidelines, complexity of the flight environment and the reentry dynamics for the reentry missions are included. The book is not targeted as a design tool for any particular discipline or subsystem. Some of the design related equations or expressions are not attempted to derive from the first principle as this is beyond the scope of this book. However, the important analytical expressions, graphs and sketches which are essential to provide in-depth understanding for the design process as well as to understand the interactions between different subsystems are appropriately included.

Optimal Trajectories in Atmospheric Flight

Optimal Trajectories in Atmospheric Flight PDF Author: Nguyen Vinh
Publisher: Elsevier
ISBN: 0444601457
Category : Technology & Engineering
Languages : en
Pages : 421

Get Book Here

Book Description
Optimal Trajectories in Atmospheric Flight deals with the optimization of trajectories in atmospheric flight. The book begins with a simple treatment of functional optimization followed by a discussion of switching theory. It then presents the derivation of the general equations of motion along with the basic knowledge in aerodynamics and propulsion necessary for the analysis of atmospheric flight trajectories. It goes on to the study of optimal trajectories by providing the general properties of the optimal aerodynamic controls and the integrals of motion. This is followed by discussions of high subsonic and supersonic flight, and approximation techniques to reduce the order of the problem for a fast computation of the optimal trajectory. The final chapters present analyses of optimal reentry trajectories and orbital maneuvers. This book is intended as a reference text for scientists and engineers wanting to get into the subject of optimal trajectories in atmospheric flight. If used for teaching purposes, the book is written in a self-contained way so that a selective use of the material is at the discretion of the lecturer. The first 11 chapters are sufficient for a one-semester course with emphasis on optimal maneuvers of high performance aircraft.

Optimal Trajectories for Space Navigation

Optimal Trajectories for Space Navigation PDF Author: Derek F. Lawden
Publisher:
ISBN:
Category : Calculus of variations
Languages : en
Pages : 144

Get Book Here

Book Description


Automatic Control of Aircraft and Missiles

Automatic Control of Aircraft and Missiles PDF Author: John H. Blakelock
Publisher: John Wiley & Sons
ISBN: 9780471506515
Category : Technology & Engineering
Languages : en
Pages : 668

Get Book Here

Book Description
This Second Edition continues the fine tradition of its predecessor by exploring the various automatic control systems in aircraft and on board missiles. Considerably expanded and updated, it now includes new or additional material on: the effectiveness of beta-beta feedback as a method of obtaining coordination during turns using the F-15 as the aircraft model; the root locus analysis of a generic acceleration autopilot used in many air-to-air and surface-to-air guided missiles; the guidance systems of the AIM-9L Sidewinder as well as bank-to-turn missiles; various types of guidance, including proportional navigation and line-of-sight and lead-angle command guidance; the coupling of the output of a director fire control system into the autopilot; the analysis of multivariable control systems; and methods for modeling the human pilot, plus the integration of the human pilot into an aircraft flight control system. Also features many new additions to the appendices.

Humans to Mars

Humans to Mars PDF Author: David S. F. Portree
Publisher:
ISBN:
Category : Space flight to Mars
Languages : en
Pages : 164

Get Book Here

Book Description


Conceptual Shape Optimization of Entry Vehicles

Conceptual Shape Optimization of Entry Vehicles PDF Author: Dominic Dirkx
Publisher: Springer
ISBN: 3319460552
Category : Technology & Engineering
Languages : en
Pages : 284

Get Book Here

Book Description
This book covers the parameterization of entry capsules, including Apollo capsules and planetary probes, and winged entry vehicles such as the Space Shuttle and lifting bodies. The aerodynamic modelling is based on a variety of panel methods that take shadowing into account, and it has been validated with flight and wind tunnel data of Apollo and the Space Shuttle. The shape optimization is combined with constrained trajectory analysis, and the multi-objective approach provides the engineer with a Pareto front of optimal shapes. The method detailed in Conceptual Shape Optimization of Entry Vehicles is straightforward, and the output gives the engineer insight in the effect of shape variations on trajectory performance. All applied models and algorithms used are explained in detail, allowing for reconstructing the design tool to the researcher’s requirements. Conceptual Shape Optimization of Entry Vehicles will be of interest to both researchers and graduate students in the field of aerospace engineering, and to practitioners within the aerospace industry.

Elements of Spacecraft Design

Elements of Spacecraft Design PDF Author: Charles D. Brown
Publisher: AIAA
ISBN: 9781600860515
Category : Space vehicles
Languages : en
Pages : 632

Get Book Here

Book Description
Annotation This text discusses the conceptual stages of mission design, systems engineering, and orbital mechanics, providing a basis for understanding the design process for different components and functions of a spacecraft. Coverage includes propulsion and power systems, structures, attitude control, thermal control, command and data systems, and telecommunications. Worked examples and exercises are included, in addition to appendices on acronyms and abbreviations and spacecraft design data. The book can be used for self-study or for a course in spacecraft design. Brown directed the team that produced the Magellan spacecraft, and has taught spacecraft design at the University of Colorado. Annotation c. Book News, Inc., Portland, OR (booknews.com).

Future Spacecraft Propulsion Systems

Future Spacecraft Propulsion Systems PDF Author: Paul A. Czysz
Publisher: Springer Science & Business Media
ISBN: 3540376410
Category : Technology & Engineering
Languages : en
Pages : 488

Get Book Here

Book Description
An understandable perspective on the types of space propulsion systems necessary to enable low-cost space flights to Earth orbit and to the Moon and the future developments necessary for exploration of the solar system and beyond to the stars.

Onboard Computers, Onboard Software and Satellite Operations

Onboard Computers, Onboard Software and Satellite Operations PDF Author: Jens Eickhoff
Publisher: Springer Science & Business Media
ISBN: 3642251706
Category : Technology & Engineering
Languages : en
Pages : 283

Get Book Here

Book Description
This book is intended as a system engineer's compendium, explaining the dependencies and technical interactions between the onboard computer hardware, the onboard software and the spacecraft operations from ground. After a brief introduction on the subsequent development in all three fields over the spacecraft engineering phases each of the main topis is treated in depth in a separate part. The features of today’s onboard computers are explained at hand of their historic evolution over the decades from the early days of spaceflight up to today. Latest system-on-chip processor architectures are treated as well as all onboard computer major components. After the onboard computer hardware the corresponding software is treated in a separate part. Both the software static architecture as well as the dynamic architecture are covered, and development technologies as well as software verification approaches are included. Following these two parts on the onboard architecture, the last part covers the concepts of spacecraft operations from ground. This includes the nominal operations concepts, the redundancy concept and the topic of failure detection, isolation and recovery. The baseline examples in the book are taken from the domain of satellites and deep space probes. The principles and many cited standards on spacecraft commanding, hardware and software however also apply to other space applications like launchers. The book is equally applicable for students as well for system engineers in space industry.