Author: Dieter Rasch
Publisher: CRC Press
ISBN: 1439816980
Category : Mathematics
Languages : en
Pages : 340
Book Description
Experimental design is often overlooked in the literature of applied and mathematical statistics: statistics is taught and understood as merely a collection of methods for analyzing data. Consequently, experimenters seldom think about optimal design, including prerequisites such as the necessary sample size needed for a precise answer for an experi
Optimal Experimental Design with R
Author: Dieter Rasch
Publisher: CRC Press
ISBN: 1439816980
Category : Mathematics
Languages : en
Pages : 340
Book Description
Experimental design is often overlooked in the literature of applied and mathematical statistics: statistics is taught and understood as merely a collection of methods for analyzing data. Consequently, experimenters seldom think about optimal design, including prerequisites such as the necessary sample size needed for a precise answer for an experi
Publisher: CRC Press
ISBN: 1439816980
Category : Mathematics
Languages : en
Pages : 340
Book Description
Experimental design is often overlooked in the literature of applied and mathematical statistics: statistics is taught and understood as merely a collection of methods for analyzing data. Consequently, experimenters seldom think about optimal design, including prerequisites such as the necessary sample size needed for a precise answer for an experi
Optimal Experimental Design with R
Author: Dieter Rasch
Publisher: Chapman & Hall/CRC
ISBN: 9780367382766
Category : Experimental design
Languages : en
Pages : 0
Book Description
Experimental design is often overlooked in the literature of applied and mathematical statistics: statistics is taught and understood as merely a collection of methods for analyzing data. Consequently, experimenters seldom think about optimal design, including prerequisites such as the necessary sample size needed for a precise answer for an experimental question. Providing a concise introduction to experimental design theory, Optimal Experimental Design with R: Introduces the philosophy of experimental design Provides an easy process for constructing experimental designs and calculating necessary sample size using R programs Teaches by example using a custom made R program package: OPDOE Consisting of detailed, data-rich examples, this book introduces experimenters to the philosophy of experimentation, experimental design, and data collection. It gives researchers and statisticians guidance in the construction of optimum experimental designs using R programs, including sample size calculations, hypothesis testing, and confidence estimation. A final chapter of in-depth theoretical details is included for interested mathematical statisticians.
Publisher: Chapman & Hall/CRC
ISBN: 9780367382766
Category : Experimental design
Languages : en
Pages : 0
Book Description
Experimental design is often overlooked in the literature of applied and mathematical statistics: statistics is taught and understood as merely a collection of methods for analyzing data. Consequently, experimenters seldom think about optimal design, including prerequisites such as the necessary sample size needed for a precise answer for an experimental question. Providing a concise introduction to experimental design theory, Optimal Experimental Design with R: Introduces the philosophy of experimental design Provides an easy process for constructing experimental designs and calculating necessary sample size using R programs Teaches by example using a custom made R program package: OPDOE Consisting of detailed, data-rich examples, this book introduces experimenters to the philosophy of experimentation, experimental design, and data collection. It gives researchers and statisticians guidance in the construction of optimum experimental designs using R programs, including sample size calculations, hypothesis testing, and confidence estimation. A final chapter of in-depth theoretical details is included for interested mathematical statisticians.
Optimal Design of Experiments
Author: Peter Goos
Publisher: John Wiley & Sons
ISBN: 1119976162
Category : Science
Languages : en
Pages : 249
Book Description
"This is an engaging and informative book on the modern practice of experimental design. The authors' writing style is entertaining, the consulting dialogs are extremely enjoyable, and the technical material is presented brilliantly but not overwhelmingly. The book is a joy to read. Everyone who practices or teaches DOE should read this book." - Douglas C. Montgomery, Regents Professor, Department of Industrial Engineering, Arizona State University "It's been said: 'Design for the experiment, don't experiment for the design.' This book ably demonstrates this notion by showing how tailor-made, optimal designs can be effectively employed to meet a client's actual needs. It should be required reading for anyone interested in using the design of experiments in industrial settings." —Christopher J. Nachtsheim, Frank A Donaldson Chair in Operations Management, Carlson School of Management, University of Minnesota This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples. These examples address questions such as the following: How can I do screening inexpensively if I have dozens of factors to investigate? What can I do if I have day-to-day variability and I can only perform 3 runs a day? How can I do RSM cost effectively if I have categorical factors? How can I design and analyze experiments when there is a factor that can only be changed a few times over the study? How can I include both ingredients in a mixture and processing factors in the same study? How can I design an experiment if there are many factor combinations that are impossible to run? How can I make sure that a time trend due to warming up of equipment does not affect the conclusions from a study? How can I take into account batch information in when designing experiments involving multiple batches? How can I add runs to a botched experiment to resolve ambiguities? While answering these questions the book also shows how to evaluate and compare designs. This allows researchers to make sensible trade-offs between the cost of experimentation and the amount of information they obtain.
Publisher: John Wiley & Sons
ISBN: 1119976162
Category : Science
Languages : en
Pages : 249
Book Description
"This is an engaging and informative book on the modern practice of experimental design. The authors' writing style is entertaining, the consulting dialogs are extremely enjoyable, and the technical material is presented brilliantly but not overwhelmingly. The book is a joy to read. Everyone who practices or teaches DOE should read this book." - Douglas C. Montgomery, Regents Professor, Department of Industrial Engineering, Arizona State University "It's been said: 'Design for the experiment, don't experiment for the design.' This book ably demonstrates this notion by showing how tailor-made, optimal designs can be effectively employed to meet a client's actual needs. It should be required reading for anyone interested in using the design of experiments in industrial settings." —Christopher J. Nachtsheim, Frank A Donaldson Chair in Operations Management, Carlson School of Management, University of Minnesota This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples. These examples address questions such as the following: How can I do screening inexpensively if I have dozens of factors to investigate? What can I do if I have day-to-day variability and I can only perform 3 runs a day? How can I do RSM cost effectively if I have categorical factors? How can I design and analyze experiments when there is a factor that can only be changed a few times over the study? How can I include both ingredients in a mixture and processing factors in the same study? How can I design an experiment if there are many factor combinations that are impossible to run? How can I make sure that a time trend due to warming up of equipment does not affect the conclusions from a study? How can I take into account batch information in when designing experiments involving multiple batches? How can I add runs to a botched experiment to resolve ambiguities? While answering these questions the book also shows how to evaluate and compare designs. This allows researchers to make sensible trade-offs between the cost of experimentation and the amount of information they obtain.
Optimal Design of Experiments
Author: Friedrich Pukelsheim
Publisher: SIAM
ISBN: 0898716047
Category : Mathematics
Languages : en
Pages : 527
Book Description
Optimal Design of Experiments offers a rare blend of linear algebra, convex analysis, and statistics. The optimal design for statistical experiments is first formulated as a concave matrix optimization problem. Using tools from convex analysis, the problem is solved generally for a wide class of optimality criteria such as D-, A-, or E-optimality. The book then offers a complementary approach that calls for the study of the symmetry properties of the design problem, exploiting such notions as matrix majorization and the Kiefer matrix ordering. The results are illustrated with optimal designs for polynomial fit models, Bayes designs, balanced incomplete block designs, exchangeable designs on the cube, rotatable designs on the sphere, and many other examples.
Publisher: SIAM
ISBN: 0898716047
Category : Mathematics
Languages : en
Pages : 527
Book Description
Optimal Design of Experiments offers a rare blend of linear algebra, convex analysis, and statistics. The optimal design for statistical experiments is first formulated as a concave matrix optimization problem. Using tools from convex analysis, the problem is solved generally for a wide class of optimality criteria such as D-, A-, or E-optimality. The book then offers a complementary approach that calls for the study of the symmetry properties of the design problem, exploiting such notions as matrix majorization and the Kiefer matrix ordering. The results are illustrated with optimal designs for polynomial fit models, Bayes designs, balanced incomplete block designs, exchangeable designs on the cube, rotatable designs on the sphere, and many other examples.
Theory of Optimal Designs
Author: Kirti R. Shah
Publisher: Springer Science & Business Media
ISBN: 1461236622
Category : Mathematics
Languages : en
Pages : 179
Book Description
There has been an enormous growth in recent years in the literature on discrete optimal designs. The optimality problems have been formulated in various models arising in the experimental designs and substantial progress has been made towards solving some of these. The subject has now reached a stage of completeness which calls for a self-contained monograph on this topic. The aim of this monograph is to present the state of the art and to focus on more recent advances in this rapidly developing area. We start with a discussion of statistical optimality criteria in Chapter One. Chapters Two and Three deal with optimal block designs. Row-column designs are dealt with in Chapter Four. In Chapter Five we deal with optimal designs with mixed effects models. Repeated measurement designs are considered in Chapter Six. Chapter Seven deals with some special situations and Weighing designs are dis cussed in Chapter Eight. We have endeavoured to include all the major developments that have taken place in the last three decades. The book should be of use to research workers in several areas including combinatorics as well as to the experimenters in diverse fields of applications. Since the details of the construction of the designs are available in excellent books, we have only pointed out the designs which have optimality proper ties. We believe, this will be adequate for the experimenters.
Publisher: Springer Science & Business Media
ISBN: 1461236622
Category : Mathematics
Languages : en
Pages : 179
Book Description
There has been an enormous growth in recent years in the literature on discrete optimal designs. The optimality problems have been formulated in various models arising in the experimental designs and substantial progress has been made towards solving some of these. The subject has now reached a stage of completeness which calls for a self-contained monograph on this topic. The aim of this monograph is to present the state of the art and to focus on more recent advances in this rapidly developing area. We start with a discussion of statistical optimality criteria in Chapter One. Chapters Two and Three deal with optimal block designs. Row-column designs are dealt with in Chapter Four. In Chapter Five we deal with optimal designs with mixed effects models. Repeated measurement designs are considered in Chapter Six. Chapter Seven deals with some special situations and Weighing designs are dis cussed in Chapter Eight. We have endeavoured to include all the major developments that have taken place in the last three decades. The book should be of use to research workers in several areas including combinatorics as well as to the experimenters in diverse fields of applications. Since the details of the construction of the designs are available in excellent books, we have only pointed out the designs which have optimality proper ties. We believe, this will be adequate for the experimenters.
Design and Analysis of Experiments with R
Author: John Lawson
Publisher: Chapman and Hall/CRC
ISBN: 9781439868133
Category : Mathematics
Languages : en
Pages : 0
Book Description
Design and Analysis of Experiments with R presents a unified treatment of experimental designs and design concepts commonly used in practice. It connects the objectives of research to the type of experimental design required, describes the process of creating the design and collecting the data, shows how to perform the proper analysis of the data, and illustrates the interpretation of results. Drawing on his many years of working in the pharmaceutical, agricultural, industrial chemicals, and machinery industries, the author teaches students how to: Make an appropriate design choice based on the objectives of a research project Create a design and perform an experiment Interpret the results of computer data analysis The book emphasizes the connection among the experimental units, the way treatments are randomized to experimental units, and the proper error term for data analysis. R code is used to create and analyze all the example experiments. The code examples from the text are available for download on the author’s website, enabling students to duplicate all the designs and data analysis. Intended for a one-semester or two-quarter course on experimental design, this text covers classical ideas in experimental design as well as the latest research topics. It gives students practical guidance on using R to analyze experimental data.
Publisher: Chapman and Hall/CRC
ISBN: 9781439868133
Category : Mathematics
Languages : en
Pages : 0
Book Description
Design and Analysis of Experiments with R presents a unified treatment of experimental designs and design concepts commonly used in practice. It connects the objectives of research to the type of experimental design required, describes the process of creating the design and collecting the data, shows how to perform the proper analysis of the data, and illustrates the interpretation of results. Drawing on his many years of working in the pharmaceutical, agricultural, industrial chemicals, and machinery industries, the author teaches students how to: Make an appropriate design choice based on the objectives of a research project Create a design and perform an experiment Interpret the results of computer data analysis The book emphasizes the connection among the experimental units, the way treatments are randomized to experimental units, and the proper error term for data analysis. R code is used to create and analyze all the example experiments. The code examples from the text are available for download on the author’s website, enabling students to duplicate all the designs and data analysis. Intended for a one-semester or two-quarter course on experimental design, this text covers classical ideas in experimental design as well as the latest research topics. It gives students practical guidance on using R to analyze experimental data.
Design of Comparative Experiments
Author: R. A. Bailey
Publisher: Cambridge University Press
ISBN: 1139469916
Category : Mathematics
Languages : en
Pages : 345
Book Description
This book should be on the shelf of every practising statistician who designs experiments. Good design considers units and treatments first, and then allocates treatments to units. It does not choose from a menu of named designs. This approach requires a notation for units that does not depend on the treatments applied. Most structure on the set of observational units, or on the set of treatments, can be defined by factors. This book develops a coherent framework for thinking about factors and their relationships, including the use of Hasse diagrams. These are used to elucidate structure, calculate degrees of freedom and allocate treatment subspaces to appropriate strata. Based on a one-term course the author has taught since 1989, the book is ideal for advanced undergraduate and beginning graduate courses. Examples, exercises and discussion questions are drawn from a wide range of real applications: from drug development, to agriculture, to manufacturing.
Publisher: Cambridge University Press
ISBN: 1139469916
Category : Mathematics
Languages : en
Pages : 345
Book Description
This book should be on the shelf of every practising statistician who designs experiments. Good design considers units and treatments first, and then allocates treatments to units. It does not choose from a menu of named designs. This approach requires a notation for units that does not depend on the treatments applied. Most structure on the set of observational units, or on the set of treatments, can be defined by factors. This book develops a coherent framework for thinking about factors and their relationships, including the use of Hasse diagrams. These are used to elucidate structure, calculate degrees of freedom and allocate treatment subspaces to appropriate strata. Based on a one-term course the author has taught since 1989, the book is ideal for advanced undergraduate and beginning graduate courses. Examples, exercises and discussion questions are drawn from a wide range of real applications: from drug development, to agriculture, to manufacturing.
Design of Experiments
Author: Max Morris
Publisher: CRC Press
ISBN: 1439894906
Category : Mathematics
Languages : en
Pages : 376
Book Description
Offering deep insight into the connections between design choice and the resulting statistical analysis, Design of Experiments: An Introduction Based on Linear Models explores how experiments are designed using the language of linear statistical models. The book presents an organized framework for understanding the statistical aspects of experiment
Publisher: CRC Press
ISBN: 1439894906
Category : Mathematics
Languages : en
Pages : 376
Book Description
Offering deep insight into the connections between design choice and the resulting statistical analysis, Design of Experiments: An Introduction Based on Linear Models explores how experiments are designed using the language of linear statistical models. The book presents an organized framework for understanding the statistical aspects of experiment
Fundamentals of Statistical Experimental Design and Analysis
Author: Robert G. Easterling
Publisher: John Wiley & Sons
ISBN: 1118954637
Category : Mathematics
Languages : en
Pages : 268
Book Description
Professionals in all areas – business; government; the physical, life, and social sciences; engineering; medicine, etc. – benefit from using statistical experimental design to better understand their worlds and then use that understanding to improve the products, processes, and programs they are responsible for. This book aims to provide the practitioners of tomorrow with a memorable, easy to read, engaging guide to statistics and experimental design. This book uses examples, drawn from a variety of established texts, and embeds them in a business or scientific context, seasoned with a dash of humor, to emphasize the issues and ideas that led to the experiment and the what-do-we-do-next? steps after the experiment. Graphical data displays are emphasized as means of discovery and communication and formulas are minimized, with a focus on interpreting the results that software produce. The role of subject-matter knowledge, and passion, is also illustrated. The examples do not require specialized knowledge, and the lessons they contain are transferrable to other contexts. Fundamentals of Statistical Experimental Design and Analysis introduces the basic elements of an experimental design, and the basic concepts underlying statistical analyses. Subsequent chapters address the following families of experimental designs: Completely Randomized designs, with single or multiple treatment factors, quantitative or qualitative Randomized Block designs Latin Square designs Split-Unit designs Repeated Measures designs Robust designs Optimal designs Written in an accessible, student-friendly style, this book is suitable for a general audience and particularly for those professionals seeking to improve and apply their understanding of experimental design.
Publisher: John Wiley & Sons
ISBN: 1118954637
Category : Mathematics
Languages : en
Pages : 268
Book Description
Professionals in all areas – business; government; the physical, life, and social sciences; engineering; medicine, etc. – benefit from using statistical experimental design to better understand their worlds and then use that understanding to improve the products, processes, and programs they are responsible for. This book aims to provide the practitioners of tomorrow with a memorable, easy to read, engaging guide to statistics and experimental design. This book uses examples, drawn from a variety of established texts, and embeds them in a business or scientific context, seasoned with a dash of humor, to emphasize the issues and ideas that led to the experiment and the what-do-we-do-next? steps after the experiment. Graphical data displays are emphasized as means of discovery and communication and formulas are minimized, with a focus on interpreting the results that software produce. The role of subject-matter knowledge, and passion, is also illustrated. The examples do not require specialized knowledge, and the lessons they contain are transferrable to other contexts. Fundamentals of Statistical Experimental Design and Analysis introduces the basic elements of an experimental design, and the basic concepts underlying statistical analyses. Subsequent chapters address the following families of experimental designs: Completely Randomized designs, with single or multiple treatment factors, quantitative or qualitative Randomized Block designs Latin Square designs Split-Unit designs Repeated Measures designs Robust designs Optimal designs Written in an accessible, student-friendly style, this book is suitable for a general audience and particularly for those professionals seeking to improve and apply their understanding of experimental design.
The Optimal Design of Blocked and Split-Plot Experiments
Author: Peter Goos
Publisher:
ISBN: 9781461300526
Category :
Languages : en
Pages : 262
Book Description
Publisher:
ISBN: 9781461300526
Category :
Languages : en
Pages : 262
Book Description