Optimal Control Schemes for Power System with Unified Power Flow Controller (UPFC)

Optimal Control Schemes for Power System with Unified Power Flow Controller (UPFC) PDF Author: Dr. Hidaia Mahmood Alassouli
Publisher: Dr. Hidaia Mahmood Alassouli
ISBN:
Category : Technology & Engineering
Languages : cs
Pages : 66

Get Book Here

Book Description
FACTS are one aspect of power electronics revolution that is taking place in all areas of electrical energy. A variable of powerful semiconductor devices not only offer the advantage of high speed and reliability of switching but, more importantly, the opportunity offered by a variety of innovative circuit concepts based on these power devices enhance the value of electric energy. In generation area, the potential application of power electronics is largely in renewable generation. Photovoltaic and fuel cells requires conversion of dc to ac. Generation with variable speed is necessary for economic viability of wind and small hydro generators. Variable-speed wind generators and small hydro generators requires conversion of variable frequency ac to power system frequency. These applications of power electronics in renewable generation area require converter sizes in the range of few kilowatts to few megawatts. In coming decades, electrical energy storage is expected to be widely used in power systems as capacitor, battery and superconducting magnet technologies move forward. Batteries are widely used already for emergency power supplies. These require ac/dc/ac converters in the range of a few kilowatts to a few tens of megawatts. On the other hand, variable speed hydro storage requires converters of up to a few hundred megawatts. In transmission area, application of power electronics consists of High Voltage Direct Current (HVDC) power transmission and FACTS. HVDC is often an economical way to interconnect certain power systems, which are suited in different regions separated by long distances or those have different frequencies or incompatible frequency control. HVDC involves conversion of ac to dc at one end and conversion of dc to ac at the other end. What is most interesting for transmission planners is that FACTS opens up new opportunities for controlling power and enhancing the usable capacity of the lines. The possibility that current through a line can be controlled at reasonable cost enables a large potential of increasing the capacity of the existing lines with larger conductors, and use one of the FACTS controllers to enable corresponding power to flow through lines under normal and contingency conditions. These opportunities arise through the ability of FACTS controllers to control the interrelated parameters that govern the operation of transmission line including series impedance, shunt impedance, current, voltage, phase angle, and the damping of oscillations at various frequencies below the rated frequency. In distribution area, an exciting opportunity called Custom Power. The custom power concept incorporates power electronics controllers and switching equipment, one or more of which can be used to provide a value-added service to the customers. In general, these custom service applications represent power electronics in the range of few tens of kilowatts to few ten of megawatts of conversion or switching equipment between the utility supply and customer. On the end-user side, power electronics conversion and switching technology has been fast growing area. Complementing the Custom Power technology is the whole area of power conditioning technology used by customers, under the term Power Quality. Uninterruptible power supplies (UPS) and voltage regulators represent the major growth area in power electronics. In end use, the converter sizes range from a few watts to ten of megawatts. The term active filter is a general one and is applied to a group of power electronic circuits incorporating power switching devices and passive energy storage circuit elements such as inductors and capacitors. The functions of these circuits vary depending on the applications. They are generally used for controlling current harmonics in supply networks at the low and medium voltage distribution level or for reactive power and/or voltage control at high voltage distribution level. These functions may be combined in a single circuit or in separate active filters. Most of the control schemes introduced in the existing papers were designed either for eliminating current harmonics or eliminating voltage flickers or for load flow control. So, this work is devoted to find a proper optimal control schemes for a system with series or shunt or series and shunt converters that can provide all functions together. Various optimal control schemes will be designed for systems with series, shunt and series-shunt converters with the objective to control the load flow through a lines and to eliminate current harmonics and voltage flickers with different strategies for tracking. · Part 1: Gives the description of optimal control design. · Part 2: Case studies to design different optimal control schemes for system with UPFC unit to control the power flow, eliminate voltage flicker and eliminate current harmonics. The case studies were repeated for system with only series or shunt converters.

Optimal Control Schemes for Power System with Unified Power Flow Controller (UPFC)

Optimal Control Schemes for Power System with Unified Power Flow Controller (UPFC) PDF Author: Dr. Hidaia Mahmood Alassouli
Publisher: Dr. Hidaia Mahmood Alassouli
ISBN:
Category : Technology & Engineering
Languages : cs
Pages : 66

Get Book Here

Book Description
FACTS are one aspect of power electronics revolution that is taking place in all areas of electrical energy. A variable of powerful semiconductor devices not only offer the advantage of high speed and reliability of switching but, more importantly, the opportunity offered by a variety of innovative circuit concepts based on these power devices enhance the value of electric energy. In generation area, the potential application of power electronics is largely in renewable generation. Photovoltaic and fuel cells requires conversion of dc to ac. Generation with variable speed is necessary for economic viability of wind and small hydro generators. Variable-speed wind generators and small hydro generators requires conversion of variable frequency ac to power system frequency. These applications of power electronics in renewable generation area require converter sizes in the range of few kilowatts to few megawatts. In coming decades, electrical energy storage is expected to be widely used in power systems as capacitor, battery and superconducting magnet technologies move forward. Batteries are widely used already for emergency power supplies. These require ac/dc/ac converters in the range of a few kilowatts to a few tens of megawatts. On the other hand, variable speed hydro storage requires converters of up to a few hundred megawatts. In transmission area, application of power electronics consists of High Voltage Direct Current (HVDC) power transmission and FACTS. HVDC is often an economical way to interconnect certain power systems, which are suited in different regions separated by long distances or those have different frequencies or incompatible frequency control. HVDC involves conversion of ac to dc at one end and conversion of dc to ac at the other end. What is most interesting for transmission planners is that FACTS opens up new opportunities for controlling power and enhancing the usable capacity of the lines. The possibility that current through a line can be controlled at reasonable cost enables a large potential of increasing the capacity of the existing lines with larger conductors, and use one of the FACTS controllers to enable corresponding power to flow through lines under normal and contingency conditions. These opportunities arise through the ability of FACTS controllers to control the interrelated parameters that govern the operation of transmission line including series impedance, shunt impedance, current, voltage, phase angle, and the damping of oscillations at various frequencies below the rated frequency. In distribution area, an exciting opportunity called Custom Power. The custom power concept incorporates power electronics controllers and switching equipment, one or more of which can be used to provide a value-added service to the customers. In general, these custom service applications represent power electronics in the range of few tens of kilowatts to few ten of megawatts of conversion or switching equipment between the utility supply and customer. On the end-user side, power electronics conversion and switching technology has been fast growing area. Complementing the Custom Power technology is the whole area of power conditioning technology used by customers, under the term Power Quality. Uninterruptible power supplies (UPS) and voltage regulators represent the major growth area in power electronics. In end use, the converter sizes range from a few watts to ten of megawatts. The term active filter is a general one and is applied to a group of power electronic circuits incorporating power switching devices and passive energy storage circuit elements such as inductors and capacitors. The functions of these circuits vary depending on the applications. They are generally used for controlling current harmonics in supply networks at the low and medium voltage distribution level or for reactive power and/or voltage control at high voltage distribution level. These functions may be combined in a single circuit or in separate active filters. Most of the control schemes introduced in the existing papers were designed either for eliminating current harmonics or eliminating voltage flickers or for load flow control. So, this work is devoted to find a proper optimal control schemes for a system with series or shunt or series and shunt converters that can provide all functions together. Various optimal control schemes will be designed for systems with series, shunt and series-shunt converters with the objective to control the load flow through a lines and to eliminate current harmonics and voltage flickers with different strategies for tracking. · Part 1: Gives the description of optimal control design. · Part 2: Case studies to design different optimal control schemes for system with UPFC unit to control the power flow, eliminate voltage flicker and eliminate current harmonics. The case studies were repeated for system with only series or shunt converters.

Optimal Control Schemes for Power System with Unified Power Flow Controller (UPFC)

Optimal Control Schemes for Power System with Unified Power Flow Controller (UPFC) PDF Author: Hedaya Mahmood Alasooly
Publisher:
ISBN: 9781008985919
Category : Technology & Engineering
Languages : en
Pages : 76

Get Book Here

Book Description
What is most interesting for transmission planners is that FACTS opens up new opportunities for controlling power and enhancing the usable capacity of the lines. The possibility that current through a line can be controlled at reasonable cost enables a large potential of increasing the capacity of the existing lines with larger conductors, and use one of the FACTS controllers to enable corresponding power to flow through lines under normal and contingency conditions. These opportunities arise through the ability of FACTS controllers to control the interrelated parameters that govern the operation of transmission line including series impedance, shunt impedance, current, voltage, phase angle, and the damping of oscillations at various frequencies below the rated frequency. In distribution area, an exciting opportunity called Custom Power. The custom power concept incorporates power electronics controllers and switching equipment, one or more of which can be used to provide a value-added service to the customers. In general, these custom service applications represent power electronics in the range of few tens of kilowatts to few ten of megawatts of conversion or switching equipment between the utility supply and customer. On the end-user side, power electronics conversion and switching technology has been fast growing area. Complementing the Custom Power technology is the whole area of power conditioning technology used by customers, under the term Power Quality. Uninterruptible power supplies (UPS) and voltage regulators represent the major growth area in power electronics. In end use, the converter sizes range from a few watts to ten of megawatts. The term active filter is a general one and is applied to a group of power electronic circuits incorporating power switching devices and passive energy storage circuit elements such as inductors and capacitors. The functions of these circuits vary depending on the applications. They are generally used for controlling current harmonics in supply networks at the low and medium voltage distribution level or for reactive power and/or voltage control at high voltage distribution level. These functions may be combined in a single circuit or in separate active filters. Most of the control schemes introduced in the existing papers were designed either for eliminating current harmonics or eliminating voltage flickers or for load flow control. So, this work is devoted to find a proper optimal control schemes for a system with series or shunt or series and shunt converters that can provide all functions together. Various optimal control schemes will be designed for systems with series, shunt and series-shunt converters with the objective to control the load flow through a lines and to eliminate current harmonics and voltage flickers with different strategies for tracking. - Part 1: Gives the description of optimal control design. - Part 2: Case studies to design different optimal control schemes for system with UPFC unit to control the power flow, eliminate voltage flicker and eliminate current harmonics. The case studies were repeated for system with only series or shunt converters.

Unified Power Flow Controller Technology and Application

Unified Power Flow Controller Technology and Application PDF Author: Jijun Yin
Publisher: Academic Press
ISBN: 0128134860
Category : Science
Languages : en
Pages : 329

Get Book Here

Book Description
Unified Power Flow Controller Technology and Application provides comprehensive coverage on UPFC technology, providing a range of topics, including design principle, control and protection, and insulation coordination. It summarizes all the most up-to-date research and practical achievements that are related to UPFC and MMC technology, including test techniques for main components, closed-loop test techniques for control and protection systems, and onsite techniques for implementing UPFC projects. The book is an essential reference book for both academics and engineers working in power system protection control, power system planning engineers, and HVDC FACTS related areas. Readers will not only obtain the detailed information regarding theoretical analysis and practical application of UPFC, but also the control mechanism of advanced MMC technology, both of which are not common topics in previously published books. - Shows how to use modular multilevel converters (MMC) to implement UPFC that lead to cost-effective and reliable systems - Draws from the most up-to-date research and practical applications - Teaches electromechanical/electromagnetic transient simulation techniques and real-time closed-loop simulation test techniques of the MMC based UPFC

Proceedings of the IEEE International Conference on Industrial Technology (ICIT ...).

Proceedings of the IEEE International Conference on Industrial Technology (ICIT ...). PDF Author:
Publisher:
ISBN:
Category : Industrial electronics
Languages : en
Pages : 588

Get Book Here

Book Description


Intelligent Methods in Electrical Power Systems

Intelligent Methods in Electrical Power Systems PDF Author: Chetan B. Khadse
Publisher: Springer Nature
ISBN: 9819757185
Category :
Languages : en
Pages : 180

Get Book Here

Book Description


Control and Optimization Methods for Complex System Resilience

Control and Optimization Methods for Complex System Resilience PDF Author: Chao Zhai
Publisher: Springer Nature
ISBN: 9819930537
Category : Technology & Engineering
Languages : en
Pages : 218

Get Book Here

Book Description
This book provides a systematic framework to enhance the ability of complex dynamical systems in risk identification, security assessment, system protection, and recovery with the assistance of advanced control and optimization technologies. By treating external disturbances as control inputs, optimal control approach is employed to identify disruptive disturbances, and online security assessment is conducted with Gaussian process and converse Lyapunov function. Model predictive approach and distributed optimization strategy are adopted to protect the complex system against critical contingencies. Moreover, the reinforcement learning method ensures the efficient restoration of complex systems from severe disruptions. This book is meant to be read and studied by researchers and graduates. It offers unique insights and practical methodology into designing and analyzing complex dynamical systems for resilience elevation.

Voltage Control and Protection in Electrical Power Systems

Voltage Control and Protection in Electrical Power Systems PDF Author: Sandro Corsi
Publisher: Springer
ISBN: 1447166361
Category : Technology & Engineering
Languages : en
Pages : 579

Get Book Here

Book Description
Based on the author’s twenty years of experience, this book shows the practicality of modern, conceptually new, wide area voltage control in transmission and distribution smart grids, in detail. Evidence is given of the great advantages of this approach, as well as what can be gained by new control functionalities which modern technologies now available can provide. The distinction between solutions of wide area voltage regulation (V-WAR) and wide area voltage protection (V-WAP) are presented, demonstrating the proper synergy between them when they operate on the same power system as well as the simplicity and effectiveness of the protection solution in this case. The author provides an overview and detailed descriptions of voltage controls, distinguishing between generalities of underdeveloped, on-field operating applications and modern and available automatic control solutions, which are as yet not sufficiently known or perceived for what they are: practical, high-performance and reliable solutions. At the end of this thorough and complex preliminary analysis the reader sees the true benefits and limitations of more traditional voltage control solutions, and gains an understanding and appreciation of the innovative grid voltage control and protection solutions here proposed; solutions aimed at improving the security, efficiency and quality of electrical power system operation around the globe. Voltage Control and Protection in Electrical Power Systems: from System Components to Wide Area Control will help to show engineers working in electrical power companies and system operators the significant advantages of new control solutions and will also interest academic control researchers studying ways of increasing power system stability and efficiency.

Thyristor-Based FACTS Controllers for Electrical Transmission Systems

Thyristor-Based FACTS Controllers for Electrical Transmission Systems PDF Author: R. Mohan Mathur
Publisher: John Wiley & Sons
ISBN: 9780471206439
Category : Technology & Engineering
Languages : en
Pages : 534

Get Book Here

Book Description
An important new resource for the international utility market Over the past two decades, static reactive power compensators have evolved into a mature technology and become an integral part of modern electrical power systems. They are one of the key devices in flexible AC transmission systems (FACTS). Coordination of static compensators with other controllable FACTS devices promises not only tremendously enhanced power system controllability, but also the extension of power transfer capability of existing transmission corridors to near their thermal capacities, thus delaying or even curtailing the need to invest in new transmission facilities. Offering both an in-depth presentation of theoretical concepts and practical applications pertaining to these power compensators, Thyristor-Based FACTS Controllers for Electrical Transmission Systems fills the need for an appropriate text on this emerging technology. Replete with examples and case studies on control design and performance, the book provides an important resource for both students and engineers working in the field.

Flexible AC Transmission Systems: Modelling and Control

Flexible AC Transmission Systems: Modelling and Control PDF Author: Xiao-Ping Zhang
Publisher: Springer Science & Business Media
ISBN: 3642282415
Category : Technology & Engineering
Languages : en
Pages : 569

Get Book Here

Book Description
The extended and revised second edition of this successful monograph presents advanced modeling, analysis and control techniques of Flexible AC Transmission Systems (FACTS). The book covers comprehensively a range of power-system control problems: from steady-state voltage and power flow control, to voltage and reactive power control, to voltage stability control, to small signal stability control using FACTS controllers. In the six years since the first edition of the book has been published research on the FACTS has continued to flourish while renewable energy has developed into a mature and booming global green business. The second edition reflects the new developments in converter configuration, smart grid technologies, super power grid developments worldwide, new approaches for FACTS control design, new controllers for distribution system control, and power electronic controllers in wind generation operation and control. The latest trends of VSC-HVDC with multilevel architecture have been included and four completely new chapters have been added devoted to Multi-Agent Systems for Coordinated Control of FACTS-devices, Power System Stability Control using FACTS with Multiple Operating Points, Control of a Looping Device in a Distribution System, and Power Electronic Control for Wind Generation.

Planning, operation and control of modern power system with large-scale renewable energy generations

Planning, operation and control of modern power system with large-scale renewable energy generations PDF Author: Youbo Liu
Publisher: Frontiers Media SA
ISBN: 283253225X
Category : Technology & Engineering
Languages : en
Pages : 155

Get Book Here

Book Description