Optics of Conducting Polymer Thin Films and Nanostructures

Optics of Conducting Polymer Thin Films and Nanostructures PDF Author: Shangzhi Chen
Publisher: Linköping University Electronic Press
ISBN: 9179297455
Category :
Languages : en
Pages : 142

Get Book Here

Book Description
Intrinsically conducting polymers forms a category of doped conjugated polymers that can conduct electricity. Since their discovery in the late 1970s, they have been widely applied in many fields, ranging from optoelectronic devices to biosensors. The most common type of conducting polymers is poly(3,4-ethylenedioxythiophene), or PEDOT. PEDOT has been popularly used as electrodes for solar cells or light-emitting diodes, as channels for organic electrochemical transistors, and as p-type legs for organic thermoelectric generators. Although many studies have been dedicated to PEDOT-based materials, there has been a lack of a unified model to describe their optical properties across different spectral ranges. In addition, the interesting optical properties of PEDOT-based materials, benefiting from its semi-metallic character, have only been rarely studied and utilized, and could potentially enable new applications. Plasmonics is a research field focusing on interactions between light and metals, such as the noble metals (gold and silver). It has enabled various opportunities in fundamental photonics as well as practical applications, varying from biosensors to colour displays. This thesis explores highly conducting polymers as alternatives to noble metals and as a new type of active plasmonic materials. Despite high degrees of microstructural disorder, conducting polymers can possess electrical conductivity approaching that of poor metals, with particularly high conductivity for PEDOT deposited via vapour phase polymerization (VPP). In this thesis, we systematically studied the optical and structural properties of VPP PEDOT thin films and their nanostructures for plasmonics and other optical applications. We employed ultra-wide spectral range ellipsometry to characterize thin VPP PEDOT films and proposed an anisotropic Drude-Lorentz model to describe their optical conductivity, covering the ultraviolet, visible, infrared, and terahertz ranges. Based on this model, PEDOT doped with tosylate (PEDOT:Tos) presented negative real permittivity in the near infrared range. While this indicated optical metallic character, the material also showed comparably large imaginary permittivity and associated losses. To better understand the VPP process, we carefully examined films with a collection of microstructural and spectroscopic characterization methods and found a vertical layer stratification in these polymer films. We unveiled the cause as related to unbalanced transport of polymerization precursors. By selection of suitable counterions, e.g., trifluoromethane sulfonate (OTf), and optimization of reaction conditions, we were able to obtain PEDOT films with electrical conductivity exceeding 5000 S/cm. In the near infrared range from 1 to 5 µm, these PEDOT:OTf films provided a well-defined plasmonic regime, characterized by negative real permittivity and lower magnitude imaginary component. Using a colloidal lithography-based approach, we managed to fabricate nanodisks of PEDOT:OTf and showed that they exhibited clear plasmonic absorption features. The experimental results matched theoretical calculations and numerical simulations. Benefiting from their mixed ionic-electronic conducting characters, such organic plasmonic materials possess redox-tunable properties that make them promising as tuneable optical nanoantennas for spatiotemporally dynamic systems. Finally, we presented a low-cost and efficient method to create structural colour surfaces and images based on UV-treated PEDOT films on metallic mirrors. The concept generates beautiful and vivid colours through-out the visible range utilizing a synergistic effect of simultaneously modulating polymer absorption and film thickness. The simplicity of the device structure, facile fabrication process, and tunability make this proof-of-concept device a potential candidate for future low-cost backlight-free displays and labels.

Optics of Conducting Polymer Thin Films and Nanostructures

Optics of Conducting Polymer Thin Films and Nanostructures PDF Author: Shangzhi Chen
Publisher: Linköping University Electronic Press
ISBN: 9179297455
Category :
Languages : en
Pages : 142

Get Book Here

Book Description
Intrinsically conducting polymers forms a category of doped conjugated polymers that can conduct electricity. Since their discovery in the late 1970s, they have been widely applied in many fields, ranging from optoelectronic devices to biosensors. The most common type of conducting polymers is poly(3,4-ethylenedioxythiophene), or PEDOT. PEDOT has been popularly used as electrodes for solar cells or light-emitting diodes, as channels for organic electrochemical transistors, and as p-type legs for organic thermoelectric generators. Although many studies have been dedicated to PEDOT-based materials, there has been a lack of a unified model to describe their optical properties across different spectral ranges. In addition, the interesting optical properties of PEDOT-based materials, benefiting from its semi-metallic character, have only been rarely studied and utilized, and could potentially enable new applications. Plasmonics is a research field focusing on interactions between light and metals, such as the noble metals (gold and silver). It has enabled various opportunities in fundamental photonics as well as practical applications, varying from biosensors to colour displays. This thesis explores highly conducting polymers as alternatives to noble metals and as a new type of active plasmonic materials. Despite high degrees of microstructural disorder, conducting polymers can possess electrical conductivity approaching that of poor metals, with particularly high conductivity for PEDOT deposited via vapour phase polymerization (VPP). In this thesis, we systematically studied the optical and structural properties of VPP PEDOT thin films and their nanostructures for plasmonics and other optical applications. We employed ultra-wide spectral range ellipsometry to characterize thin VPP PEDOT films and proposed an anisotropic Drude-Lorentz model to describe their optical conductivity, covering the ultraviolet, visible, infrared, and terahertz ranges. Based on this model, PEDOT doped with tosylate (PEDOT:Tos) presented negative real permittivity in the near infrared range. While this indicated optical metallic character, the material also showed comparably large imaginary permittivity and associated losses. To better understand the VPP process, we carefully examined films with a collection of microstructural and spectroscopic characterization methods and found a vertical layer stratification in these polymer films. We unveiled the cause as related to unbalanced transport of polymerization precursors. By selection of suitable counterions, e.g., trifluoromethane sulfonate (OTf), and optimization of reaction conditions, we were able to obtain PEDOT films with electrical conductivity exceeding 5000 S/cm. In the near infrared range from 1 to 5 µm, these PEDOT:OTf films provided a well-defined plasmonic regime, characterized by negative real permittivity and lower magnitude imaginary component. Using a colloidal lithography-based approach, we managed to fabricate nanodisks of PEDOT:OTf and showed that they exhibited clear plasmonic absorption features. The experimental results matched theoretical calculations and numerical simulations. Benefiting from their mixed ionic-electronic conducting characters, such organic plasmonic materials possess redox-tunable properties that make them promising as tuneable optical nanoantennas for spatiotemporally dynamic systems. Finally, we presented a low-cost and efficient method to create structural colour surfaces and images based on UV-treated PEDOT films on metallic mirrors. The concept generates beautiful and vivid colours through-out the visible range utilizing a synergistic effect of simultaneously modulating polymer absorption and film thickness. The simplicity of the device structure, facile fabrication process, and tunability make this proof-of-concept device a potential candidate for future low-cost backlight-free displays and labels.

Conducting Polymers with Micro or Nanometer Structure

Conducting Polymers with Micro or Nanometer Structure PDF Author: Meixiang Wan
Publisher: Springer Science & Business Media
ISBN: 3540693238
Category : Technology & Engineering
Languages : en
Pages : 307

Get Book Here

Book Description
Conducting Polymers with Micro or Nanometer Structure describes a topic discovered by three winners of the Nobel Prize in Chemistry in 2000: Alan J. Heeger, University of California at Santa Barbara, Alan G. MacDiarmid at the University of Pennsylvania, and Hideki Shirakawa at the University of Tsukuba. Since then, the unique properties of conducting polymers have led to promising applications in functional materials and technologies. The book first briefly summarizes the main concepts of conducting polymers before introducing micro/nanostructured conducting polymers dealing with their synthesis, structural characterizations, formation mechanisms, physical and chemical properties, and potential applications in nanomaterials and nanotechnology. The book is intended for researchers in the related fields of chemistry, physics, materials, nanomaterials and nanodevices. Meixiang Wan is a professor at the Institute of Chemistry, Chinese Academy of Sciences, Beijing.

Optical Properties of Metal Oxide Nanostructures

Optical Properties of Metal Oxide Nanostructures PDF Author: Vijay Kumar
Publisher: Springer Nature
ISBN: 9819956404
Category : Science
Languages : en
Pages : 515

Get Book Here

Book Description
This book highlights the optical properties of metal oxides at both the fundamental and applied level and their use in various applications. The book offers a basic understanding of the optical properties and related spectroscopic techniques essential for anyone interested in learning about metal oxide nanostructures. This is partly due to the fact that optical properties are closely associated with other properties and functionalities (e.g., electronic, magnetic, and thermal), which are of essential significance to many technological applications, such as optical data communications, imaging, lighting, and displays, life sciences, health care, security, and safety. The book also highlights the fundamentals and systematic developments in various optical techniques to achieve better characterization, cost-effective, user-friendly approaches, and most importantly, state-of-the-art developing methodologies for various scientific and technological applications. It provides an adequate understanding of the imposed limitations and highlights the prospects and challenges associated with optical analytical methods to achieve the desired performance in targeted applications.

Dekker Encyclopedia of Nanoscience and Nanotechnology

Dekker Encyclopedia of Nanoscience and Nanotechnology PDF Author: James A. Schwarz
Publisher: CRC Press
ISBN: 9780824750510
Category : Science
Languages : en
Pages : 784

Get Book Here

Book Description


ETCMOS 2016 Presentation Abstracts

ETCMOS 2016 Presentation Abstracts PDF Author: ETCMOS
Publisher: ETCMOS Services Inc.
ISBN: 1927500796
Category :
Languages : en
Pages : 94

Get Book Here

Book Description
Abstracts for presentations at the ETCMOS 2016 conference in Montreal, Canada, May 25 - 27, 2016.

Polymer Nanocomposites based on Inorganic and Organic Nanomaterials

Polymer Nanocomposites based on Inorganic and Organic Nanomaterials PDF Author: Smita Mohanty
Publisher: John Wiley & Sons
ISBN: 1119179076
Category : Technology & Engineering
Languages : en
Pages : 474

Get Book Here

Book Description
This book covers all aspects of the different classes of nanomaterials – from synthesis to application. It investigates in detail the use and feasibility of developing nanocomposites with these nanomaterials as reinforcements. The book encompasses synthesis and properties of cellulose nanofibers, bacterial nanocellulose, carbon nanotubes / nanofibers, graphene, nanodiamonds, nanoclays, inorganic nanomaterials and their nanocomposites for high-end applications such as electronic devices, energy storage, structural and packaging. The book also provides insight into various modification techniques for improving the functionality of nanomaterials apart from their compatibility with the base matrix.

Physics, Chemistry and Application of Nanostructures

Physics, Chemistry and Application of Nanostructures PDF Author: Viktor Evgen?evich Borisenko
Publisher: World Scientific
ISBN: 9814280356
Category : Science
Languages : en
Pages : 669

Get Book Here

Book Description
The book presents invited reviews and original short notes with recent results obtained in fabrication study and application of nanostructures, which are promising for new generations of electronic and optoelectronic devices. Recent developments in nanotechnology, nanoelectronics, spintronics, nanophotonics, nanosensorics and nanobiology are presented.

Metallurgy

Metallurgy PDF Author: Yogiraj Pardhi
Publisher: BoD – Books on Demand
ISBN: 9535107364
Category : Technology & Engineering
Languages : en
Pages : 190

Get Book Here

Book Description
In recent decades scientists and engineers around the globe have been responding to the requirement of high performance materials through innovative material research and engineering. The ever increasing demand on quality and reliability has resulted in some dazzling technological achievements in the area of advanced materials and manufacturing. The purpose of this book is to bring together significant findings of leading experts, in developing and improving the technology that supports advanced materials and process development. From gold nano-structures to advanced superalloys, this book covers investigations involving modern computer based approaches as well as traditional experimental techniques. Selected articles include research findings on advances made in materials that are used not only in complex structures such as aeroplanes but also in clinical treatments. It is envisaged that it will promote knowledge transfer across the materials society including university students, engineers and scientists to built further understanding of the subject.

Physics, Chemistry And Application Of Nanostructures: Reviews And Short Notes - Proceedings Of The International Conference On Nanomeeting 2009

Physics, Chemistry And Application Of Nanostructures: Reviews And Short Notes - Proceedings Of The International Conference On Nanomeeting 2009 PDF Author: Victor E Borisenko
Publisher: World Scientific
ISBN: 981446726X
Category : Science
Languages : en
Pages : 669

Get Book Here

Book Description
The book presents invited reviews and original short notes with recent results obtained in fabrication study and application of nanostructures, which are promising for new generations of electronic and optoelectronic devices.Recent developments in nanotechnology, nanoelectronics, spintronics, nanophotonics, nanosensorics and nanobiology are presented.

Nonlinear Optics of Organic Molecules and Polymers

Nonlinear Optics of Organic Molecules and Polymers PDF Author: Hari Singh Nalwa
Publisher: CRC Press
ISBN: 0429611617
Category : Technology & Engineering
Languages : en
Pages : 896

Get Book Here

Book Description
The field of nonlinear optics emerged three decades ago with the development of the first operating laser and the demonstration of frequency doubling phenomena. These milestone discoveries not only generated much interest in laser science, but also set the stage for future work on nonlinear optics. This book presents an excellent overview of the exciting new advances in nonlinear optical (NLO) materials and their applications in emerging photonics technologies. It is the first reference source available to cover every NLO material published through 1995. All theoretical approaches, measurement techniques, materials, technologies, and applications are covered. With more than 1,800 bibliographic citations, 324 figures, 218 tables, and 812 equations, this book is an invaluable reference source for graduate and undergraduate students, researchers, scientists and engineers working in academia and industries in chemistry, solid-state physics, materials science, optical and polymer engineering, and computational science.