Optical Properties of Narrow-Gap Low-Dimensional Structures

Optical Properties of Narrow-Gap Low-Dimensional Structures PDF Author: Clivia M. Sotomayor Torres
Publisher: Springer Science & Business Media
ISBN: 1461318793
Category : Science
Languages : en
Pages : 357

Get Book Here

Book Description
This volume contains the Proceedings of the NATO Advanced Research Workshop on "Optical Properties of Narrow-Gap Low-Dimensional Structures", held from July 29th to August 1st, 1986, in St. Andrews, Scotland, under the auspices of the NATO International Scientific Exchange Program. The workshop was not limited to optical properties of narrow-gap semiconductor structures (Part III). Sessions on, for example, the growth methods and characterization of III-V, II-VI, and IV-VI materials, discussed in Part II, were an integral part of the workshop. Considering the small masses of the carriers in narrow-gap low dimensional structures (LOS), in Part I the enhanced band mixing and magnetic field effects are explored in the context of the envelope function approximation. Optical nonlinearities and energy relaxation phenomena applied to the well-known systems of HgCdTe and GaAs/GaAIAs, respectively, are reviewed with comments on their extension to narrow gap LOS. The relevance of optical observations in quantum transport studies is illustrated in Part IV. A review of devices based on epitaxial narrow-gap materials defines a frame of reference for future ones based on two-dimensional narrow-gap semiconductors; in addition, an analysis of the physics of quantum well lasers provides a guide to relevant parameters for narrow-gap laser devices for the infrared (Part V). The roles and potentials of special techniques are explored in Part VI, with emphasis on hydrostatic pressure techniques, since this has a pronounced effect in small-mass, narrow-gap, non-parabolic structures.

Optical Properties of Narrow-Gap Low-Dimensional Structures

Optical Properties of Narrow-Gap Low-Dimensional Structures PDF Author: Clivia M. Sotomayor Torres
Publisher: Springer Science & Business Media
ISBN: 1461318793
Category : Science
Languages : en
Pages : 357

Get Book Here

Book Description
This volume contains the Proceedings of the NATO Advanced Research Workshop on "Optical Properties of Narrow-Gap Low-Dimensional Structures", held from July 29th to August 1st, 1986, in St. Andrews, Scotland, under the auspices of the NATO International Scientific Exchange Program. The workshop was not limited to optical properties of narrow-gap semiconductor structures (Part III). Sessions on, for example, the growth methods and characterization of III-V, II-VI, and IV-VI materials, discussed in Part II, were an integral part of the workshop. Considering the small masses of the carriers in narrow-gap low dimensional structures (LOS), in Part I the enhanced band mixing and magnetic field effects are explored in the context of the envelope function approximation. Optical nonlinearities and energy relaxation phenomena applied to the well-known systems of HgCdTe and GaAs/GaAIAs, respectively, are reviewed with comments on their extension to narrow gap LOS. The relevance of optical observations in quantum transport studies is illustrated in Part IV. A review of devices based on epitaxial narrow-gap materials defines a frame of reference for future ones based on two-dimensional narrow-gap semiconductors; in addition, an analysis of the physics of quantum well lasers provides a guide to relevant parameters for narrow-gap laser devices for the infrared (Part V). The roles and potentials of special techniques are explored in Part VI, with emphasis on hydrostatic pressure techniques, since this has a pronounced effect in small-mass, narrow-gap, non-parabolic structures.

Optical Properties of Narrow-Gap Low-Dimensional Structures

Optical Properties of Narrow-Gap Low-Dimensional Structures PDF Author: Clivia M Sotomayor Torres
Publisher:
ISBN: 9781461318804
Category :
Languages : en
Pages : 376

Get Book Here

Book Description


Thin Film Growth Techniques for Low-Dimensional Structures

Thin Film Growth Techniques for Low-Dimensional Structures PDF Author: R.F.C. Farrow
Publisher: Springer Science & Business Media
ISBN: 1468491458
Category : Technology & Engineering
Languages : en
Pages : 548

Get Book Here

Book Description
This work represents the account of a NATO Advanced Research Workshop on "Thin Film Growth Techniques for Low Dimensional Structures", held at the University of Sussex, Brighton, England from 15-19 Sept. 1986. The objective of the workshop was to review the problems of the growth and characterisation of thin semiconductor and metal layers. Recent advances in deposition techniques have made it possible to design new material which is based on ultra-thin layers and this is now posing challenges for scientists, technologists and engineers in the assessment and utilisation of such new material. Molecular beam epitaxy (MBE) has become well established as a method for growing thin single crystal layers of semiconductors. Until recently, MBE was confined to the growth of III-V compounds and alloys, but now it is being used for group IV semiconductors and II-VI compounds. Examples of such work are given in this volume. MBE has one major advantage over other crystal growth techniques in that the structure of the growing layer can be continuously monitored using reflection high energy electron diffraction (RHEED). This technique has offered a rare bonus in that the time dependent intensity variations of RHEED can be used to determine growth rates and alloy composition rather precisely. Indeed, a great deal of new information about the kinetics of crystal growth from the vapour phase is beginning to emerge.

Condensed Systems of Low Dimensionality

Condensed Systems of Low Dimensionality PDF Author: J.L. Beeby
Publisher: Springer Science & Business Media
ISBN: 1468413481
Category : Technology & Engineering
Languages : en
Pages : 811

Get Book Here

Book Description
The NATO Special Programme Panel on Condensed Systems of Low Dimensionality began its work in 1985 at a time of considerable activity in the field. The Panel has since funded many Advanced Research Workshops, Advanced Study Institutes, Cooperative Research Grants and Research Visits across the breadth of its remit, which stretches from self-organizing organic molecules to semiconductor structures having two, one and zero dimensions. The funded activities, especially the workshops, have allowed researchers from within NATO countries to exchange ideas and work together at a period of development of the field when such interactions are most valuable. Such timely support has undoubtedly assisted the development of national programs, particularly in the countries of the alliance wishing to strengthen their science base. A closing Workshop to mark the end of the Panel's activities was organized in Marmaris, Turkey from April 23-27, 1990, with the same title as the Panel: Condensed systems of Low Dimensionality. This volume contains papers presented at that meeting, which sought to bring together chemists, physicists and engineers from across the spectrum of the Panel's activities to discuss topics of current interest in their special fields and to exchange ideas about the effects of low dimensionality. As the following pages show, this is a topic of extraordinary interest and challenge which produces entirely new scientific phenomena, and at the same time offers the possibility of novel technological applications.

Physics and Properties of Narrow Gap Semiconductors

Physics and Properties of Narrow Gap Semiconductors PDF Author: Junhao Chu
Publisher: Springer Science & Business Media
ISBN: 0387748016
Category : Science
Languages : en
Pages : 613

Get Book Here

Book Description
Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. They often operate at the extremes of the rules of semiconductor science. This book offers clear descriptions of crystal growth and the fundamental structure and properties of these unique materials. Topics covered include band structure, optical and transport properties, and lattice vibrations and spectra. A thorough treatment of the properties of low-dimensional systems and their relation to infrared applications is provided.

Device Physics of Narrow Gap Semiconductors

Device Physics of Narrow Gap Semiconductors PDF Author: Junhao Chu
Publisher: Springer Science & Business Media
ISBN: 1441910409
Category : Technology & Engineering
Languages : en
Pages : 676

Get Book Here

Book Description
Narrow gap semiconductors obey the general rules of semiconductor science, but often exhibit extreme features of these rules because of the same properties that produce their narrow gaps. Consequently these materials provide sensitive tests of theory, and the opportunity for the design of innovative devices. Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. Device Physics of Narrow Gap Semiconductors, a forthcoming second book, offers descriptions of the materials science and device physics of these unique materials. Topics covered include impurities and defects, recombination mechanisms, surface and interface properties, and the properties of low dimensional systems for infrared applications. This book will help readers to understand not only semiconductor physics and materials science, but also how they relate to advanced opto-electronic devices. The final chapter describes the device physics of photoconductive detectors, photovoltaic infrared detectors, super lattices and quantum wells, infrared lasers, and single photon infrared detectors.

Light Scattering in Semiconductor Structures and Superlattices

Light Scattering in Semiconductor Structures and Superlattices PDF Author: D.J. Lockwood
Publisher: Springer
ISBN: 1489936955
Category : Science
Languages : en
Pages : 592

Get Book Here

Book Description
Just over 25 years ago the first laser-excited Raman spectrum of any crystal was obtained. In November 1964, Hobden and Russell reported the Raman spectrum of GaP and later, in June 1965, Russell published the Si spectrum. Then, in July 1965, the forerunner of a series of meetings on light scattering in solids was held in Paris. Laser Raman spectroscopy of semiconductors was at the forefront in new developments at this meeting. Similar meetings were held in 1968 (New York), 1971 (Paris) and 1975 (Campinas). Since then, and apart from the multidisciplinary biennial International Conference on Raman Spectroscopy there has been no special forum for experts in light scattering spectroscopy of semiconductors to meet and discuss latest developments. Meanwhile, technological advances in semiconductor growth have given rise to a veritable renaissance in the field of semiconductor physics. Light scattering spectroscopy has played a crucial role in the advancement of this field, providing valuable information about the electronic, vibrational and structural properties both of the host materials, and of heterogeneous composite structures. On entering a new decade, one in which technological advances in lithography promise to open even broader horirons for semiconductor physics, it seemed to us to be an ideal time to reflect on the achievements of the past decade, to be brought up to date on the current state-of-the-art, and to catch some glimpses of where the field might be headed in the 1990s.

Lower-Dimensional Systems and Molecular Electronics

Lower-Dimensional Systems and Molecular Electronics PDF Author: Robert M. Metzger
Publisher: Springer Science & Business Media
ISBN: 1489920889
Category : Science
Languages : en
Pages : 729

Get Book Here

Book Description
This volume represents the written account of the NATO Advanced Study Institute "Lower-Dimensional Systems and Molecular Electronics" held at Hotel Spetses, Spetses Island, Greece from 12 June to 23 June 1989. The goal of the Institute was to demonstrate the breadth of chemical and physical knowledge that has been acquired in the last 20 years in inorganic and organic crystals, polymers, and thin films, which exhibit phenomena of reduced dimensionality. The interest in these systems started in the late 1960's with lower-dimensional inorganic conductors, in the early 1970's with quasi-one-dimensional crystalline organic conductors. which by 1979 led to the first organic superconductors, and, in 1977, to the fITSt conducting polymers. The study of monolayer films (Langmuir-Blodgett films) had progressed since the 1930's, but reached a great upsurge in . the early 1980's. The pursuit of non-linear optical phenomena became increasingly popular in the early 1980's, as the attention turned from inorganic crystals to organic films and polymers. And in the last few years the term "moleculw' electronics" has gained ever-increasing acceptance, although it is used in several contexts. We now have organic superconductors with critical temperatures in excess of 10 K, conducting polymers that are soluble and processable, and used commercially; we have films of a few monolayers that have high in-plane electrical conductivity, and polymers that show great promise in photonics; we even have a few devices that function almost at the molecular level.

Guidelines for Mastering the Properties of Molecular Sieves

Guidelines for Mastering the Properties of Molecular Sieves PDF Author: Denise Barthomeuf
Publisher: Springer Science & Business Media
ISBN: 146845787X
Category : Science
Languages : en
Pages : 424

Get Book Here

Book Description
Low dimensionality is a multifarious concept which applies to very diversified materials. Thus, examples of low-dimensional systems are structures with one or several layers, single lines or patterns of lines, and small clusters isolated or dispersed in solid systems. Such low dimensional features can be produced in a wide variety of materials systems with a broad spectrum of scientific and practical interests. These features, in turn, induce specific properties and, particularly, specific transport properties. In the case of zeolites, low dimensionality appears in the network of small-diameter pores of molecular size, extending in one, two or three di mensions, that these solids exhibit as a characteristic feature and which explains the term of "molecular sieves" currently used to name these ma terials. Indeed, a large number of industrial processes for separation of gases and liquids, and for catalysis are based upon the use of this low dimensional feature in zeolites. For instance, zeolites constitute the first class of catalysts employed allover the world. Because of the peculiarity and flexibility of their structure (and composition), zeolites can be adapted to suit many specific and diversified applications. For this reason, zeolites are presently the object of a large and fast-growing interest among chemists and chemical engineers.

Nonlinear Optics in Semiconductors I

Nonlinear Optics in Semiconductors I PDF Author:
Publisher: Academic Press
ISBN: 0080864562
Category : Science
Languages : en
Pages : 445

Get Book Here

Book Description
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded.Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry.