Optical Diffraction Radiation from a Beam Off a Circular Target

Optical Diffraction Radiation from a Beam Off a Circular Target PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 29

Get Book Here

Book Description
The use of optical diffraction radiation (ODR) as a diagnostic tool has increased in recent years. The potential of this technique has been demonstrated in several experiments at KEK [1], APS [2], FLASH [3] and possibly other facilities. These experiments were performed in extraction beam lines of lepton machines. However this technique can also be applied to high energy hadron beams. In this report we consider the ODR produced by such beams with the target as a round hole and apply the results to the Tevatron. This radiation is produced when a beam passes in the vicinity of a conducting target. The electro-magnetic fields due to the beam induce currents on the target and as the beam propagates, the currents change in time producing radiation both in the direction of beam propagation and along the direction of specular reflection from the target. This latter radiation, also termed backward diffraction radiation (BDR), is more useful for diagnostics since it can be directed out at the same longitudinal location as the target. This radiation is different from optical transition radiation (OTR) in which the beam passes through a metal target. Transition radiation is not suitable for continuous monitoring of a beam in a collider due to the beam energy loss and emittance growth and the fact that the target may be damaged. However the techniques for analyzing ODR are similar in many respects to those for OTR. Measurements of the radiation intensity either in the near field or far-field have been used to determine beam positions and sizes. For example, the beam size and beam position of a 1.28 GeV electron beam were measured in an extraction beam line at KEK [1] using the far-field angular distribution of the radiation. The near-field image was used to monitor the relative beam size of a 7 GeV electron beam in the extraction line at APS [2]. In principle, measurements of the beam divergence are also possible using the interference of ODR between two targets, as has been done with OTR. This paper is motivated by the desire to use this technique in colliders, especially for the LHC and possibly for future colliders envisaged such as the muon collider. A brief report on these prospects was presented earlier [4]. If the technique yields beam measurements with sufficient accuracy and reliability then the non-invasive nature would allow continuous monitoring during the length of a luminosity run. This would be valuable if the beam can be imaged close to the interaction points. Synchrotron radiation is already used as a non-invasive diagnostic tool in the Tevatron and will also be used in the LHC. The principal advantage of ODR is that it can be generated in a straight section and therefore used for imaging in an experimental insertion. The disadvantage is that the ODR flux is less copious than synchrotron radiation (OSR) and imaging will take longer than with OSR. In Section 2 we briefly discuss the parameters of different hadron colliders. In Section 3 we derive the basic results for the angular differential spectrum of ODR from a round hole due to a bunch. We apply these results in Section 4 to find the sensitivity of the spectrum to beam size and offset changes. In Section 5, we calculate the expected photon yield from a bunch per turn as a function of frequency and we use this to find the frequency range where a sufficiently strong ODR signal can be obtained. In Section 6 we do a brief comparison of the ODR spectrum with the OTR spectrum. We briefly list in Section 7 the experimental issues associated with measuring ODR when two beams are present. We end with our conclusions in Section 8. We will use CGS units throughout.

Optical Diffraction Radiation from a Beam Off a Circular Target

Optical Diffraction Radiation from a Beam Off a Circular Target PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 29

Get Book Here

Book Description
The use of optical diffraction radiation (ODR) as a diagnostic tool has increased in recent years. The potential of this technique has been demonstrated in several experiments at KEK [1], APS [2], FLASH [3] and possibly other facilities. These experiments were performed in extraction beam lines of lepton machines. However this technique can also be applied to high energy hadron beams. In this report we consider the ODR produced by such beams with the target as a round hole and apply the results to the Tevatron. This radiation is produced when a beam passes in the vicinity of a conducting target. The electro-magnetic fields due to the beam induce currents on the target and as the beam propagates, the currents change in time producing radiation both in the direction of beam propagation and along the direction of specular reflection from the target. This latter radiation, also termed backward diffraction radiation (BDR), is more useful for diagnostics since it can be directed out at the same longitudinal location as the target. This radiation is different from optical transition radiation (OTR) in which the beam passes through a metal target. Transition radiation is not suitable for continuous monitoring of a beam in a collider due to the beam energy loss and emittance growth and the fact that the target may be damaged. However the techniques for analyzing ODR are similar in many respects to those for OTR. Measurements of the radiation intensity either in the near field or far-field have been used to determine beam positions and sizes. For example, the beam size and beam position of a 1.28 GeV electron beam were measured in an extraction beam line at KEK [1] using the far-field angular distribution of the radiation. The near-field image was used to monitor the relative beam size of a 7 GeV electron beam in the extraction line at APS [2]. In principle, measurements of the beam divergence are also possible using the interference of ODR between two targets, as has been done with OTR. This paper is motivated by the desire to use this technique in colliders, especially for the LHC and possibly for future colliders envisaged such as the muon collider. A brief report on these prospects was presented earlier [4]. If the technique yields beam measurements with sufficient accuracy and reliability then the non-invasive nature would allow continuous monitoring during the length of a luminosity run. This would be valuable if the beam can be imaged close to the interaction points. Synchrotron radiation is already used as a non-invasive diagnostic tool in the Tevatron and will also be used in the LHC. The principal advantage of ODR is that it can be generated in a straight section and therefore used for imaging in an experimental insertion. The disadvantage is that the ODR flux is less copious than synchrotron radiation (OSR) and imaging will take longer than with OSR. In Section 2 we briefly discuss the parameters of different hadron colliders. In Section 3 we derive the basic results for the angular differential spectrum of ODR from a round hole due to a bunch. We apply these results in Section 4 to find the sensitivity of the spectrum to beam size and offset changes. In Section 5, we calculate the expected photon yield from a bunch per turn as a function of frequency and we use this to find the frequency range where a sufficiently strong ODR signal can be obtained. In Section 6 we do a brief comparison of the ODR spectrum with the OTR spectrum. We briefly list in Section 7 the experimental issues associated with measuring ODR when two beams are present. We end with our conclusions in Section 8. We will use CGS units throughout.

Diffraction Radiation from Relativistic Particles

Diffraction Radiation from Relativistic Particles PDF Author: Alexander Potylitsyn
Publisher: Springer Science & Business Media
ISBN: 3642125123
Category : Science
Languages : en
Pages : 285

Get Book Here

Book Description
This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves near a target edge at a distance ( – Lorentz factor, – wave length). Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.

Diffraction Radiation from Relativistic Particles

Diffraction Radiation from Relativistic Particles PDF Author: Alexander Potylitsyn
Publisher: Springer
ISBN: 9783642125140
Category : Science
Languages : en
Pages : 278

Get Book Here

Book Description
This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves near a target edge at a distance ( – Lorentz factor, – wave length). Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.

Feasibility of Diffraction Radiation for a Non-invasive Diagnostics of the SLAC Electron Beam

Feasibility of Diffraction Radiation for a Non-invasive Diagnostics of the SLAC Electron Beam PDF Author: M. Ross
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Get Book Here

Book Description
The development of the non-invasive bunch size diagnostics based on the diffraction radiation is now in progress in frame of TPU-KEK-SLAC collaboration. The experimental test of a transverse beam size measurement was performed successful on the KEK-ATF extracted electron beam. However many difficulties emerge if we going from the one GeV electron energy to the several tenth GeV electron beams. The extremely high Lorenz-factor value gives rise to the some problems, such as large contribution of a radiation from an accelerator construction elements in submillimeter wavelength region, extremely pre-wave zone effect even in the optical range, exceeding of the electron beam divergence over the diffraction radiation cone, and so on. More over, the sensitivity of the method based on the optical diffraction radiation from flat slit target decrease catastrophic when an electron energy increase up to several tenth GeV. We suggest the new method based on the phase shift on the slit target, consisting on the two semi-planes which are turned at a some angle one to other (crossed target technique) and present here the results of experimental test of this technique. Also we discuss the origins of indicated difficulties and suggest the ways of these problems solution.

Guiding, Diffraction, and Confinement of Optical Radiation

Guiding, Diffraction, and Confinement of Optical Radiation PDF Author: Salvatore Solimeno
Publisher: Elsevier
ISBN: 0323144195
Category : Science
Languages : en
Pages : 635

Get Book Here

Book Description
Guiding, Diffraction, and Confinement of Optical Radiation presents a wide array of research studies on optics and electromagnetism. This book is organized into eight chapters that cover the problems related to optical radiation propagation and confinement. Chapter I examines the general features of electromagnetic propagation and introduces the basic concepts pertaining to the description of the electromagnetic field and its interaction with matter. Chapter II is devoted to asymptotic methods of solution of the wave equation, with particular emphasis on the asymptotic representation of the field in the form of the Luneburg-Kline series. This chapter also looks into a number of optical systems characterized by different refractive index distributions relying on the eikonal equation. Chapter III deals with stratified media, such as the multilayered thin films, metallic and dielectric reflectors, and interference filters. Chapters IV and V discuss the problem of propagation and diffraction integrals. Chapter VI describes the scattering from obstacles and the metallic and dielectric gratings. Chapters VII considers the passive and active resonators employed in connection with laser sources for producing a confinement near the axis of an optical cavity and Fabry-Perot interferometers and mainly relies on the use of diffraction theory. Chapter VIII presents the analytic approach to the study of transverse confinement near the axis of a dielectric waveguide hinges on the introduction of modal solutions of the wave equation. This book will be of value to quantum electronics engineers, physicists, researchers, and optics and electromagnetism graduate students.

Guiding, Diffraction, and Confinement of Optical Radiation

Guiding, Diffraction, and Confinement of Optical Radiation PDF Author: Salvatore Solimeno
Publisher:
ISBN: 9780126543414
Category : Technology & Engineering
Languages : en
Pages : 620

Get Book Here

Book Description


The Optical Principles of the Diffraction of X-rays

The Optical Principles of the Diffraction of X-rays PDF Author: Reginald William James
Publisher:
ISBN:
Category : Crystallography
Languages : en
Pages : 692

Get Book Here

Book Description


Analysis of Contribution from Edge Radiation to Optical Diffraction Radiation

Analysis of Contribution from Edge Radiation to Optical Diffraction Radiation PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Beam size measurement with near-field optical diffraction radiation (ODR) has been carried out successfully at CEBAF. The ODR station is installed on the Hall-A beam line after eight bending magnets. The ODR images were affected by an unexpected radiation. Some calculations for analyzing the source of the radiation will be presented. Furthermore, two schemes will be proposed to alleviate the contamination.

Electron Beam Microanalysis

Electron Beam Microanalysis PDF Author:
Publisher: ASTM International
ISBN:
Category :
Languages : en
Pages : 86

Get Book Here

Book Description


Official Gazette of the United States Patent and Trademark Office

Official Gazette of the United States Patent and Trademark Office PDF Author:
Publisher:
ISBN:
Category : Patents
Languages : en
Pages : 860

Get Book Here

Book Description