Author: Slim Hammadi
Publisher: John Wiley & Sons
ISBN: 1118577256
Category : Technology & Engineering
Languages : en
Pages : 231
Book Description
The use and management of multimodal transport systems, including car-pooling and goods transportation, have become extremely complex, due to their large size (sometimes several thousand variables), the nature of their dynamic relationships as well as the many constraints to which they are subjected. The managers of these systems must ensure that the system works as efficiently as possible by managing the various causes of malfunction of the transport system (vehicle breakdowns, road obstructions, accidents, etc.). The detection and resolution of conflicts, which are particularly complex and must be dealt with in real time, are currently processed manually by operators. However, the experience and abilities of these operators are no longer sufficient when faced with the complexity of the problems to be solved. It is thus necessary to provide them with an interactive tool to help with the management of disturbances, enabling them to identify the different disturbances, to characterize and prioritize these disturbances, to process them by taking into account their specifics and to evaluate the impact of the decisions in real time. Each chapter of this book can be broken down into an approach for solving a transport problem in 3 stages, i.e. modeling the problem, creating optimization algorithms and validating the solutions. The management of a transport system calls for knowledge of a variety of theories (problem modeling tools, multi-objective problem classification, optimization algorithms, etc.). The different constraints increase its complexity drastically and thus require a model that represents as far as possible all the components of a problem in order to better identify it and propose corresponding solutions. These solutions are then evaluated according to the criteria of the transport providers as well as those of the city transport authorities. This book consists of a state of the art on innovative transport systems as well as the possibility of coordinating with the current public transport system and the authors clearly illustrate this coordination within the framework of an intelligent transport system. Contents 1. Dynamic Car-pooling, Slim Hammadi and Nawel Zangar. 2. Simulation of Urban Transport Systems, Christian Tahon, Thérèse Bonte and Alain Gibaud. 3. Real-time Fleet Management: Typology and Methods, Frédéric Semet and Gilles Goncalves. 4. Solving the Problem of Dynamic Routes by Particle Swarm, Mostefa Redouane Khouahjia, Laetitia Jourdan and El Ghazali Talbi. 5. Optimization of Traffic at a Railway Junction: Scheduling Approaches Based on Timed Petri Nets, Thomas Bourdeaud’huy and Benoît Trouillet. About the Authors Slim Hammadi is Full Professor at the Ecole Centrale de Lille in France, and Director of the LAGIS Team on Optimization of Logistic systems. He is an IEEE Senior Member and specializes in distributed optimization, multi-agent systems, supply chain management and metaheuristics. Mekki Ksouri is Professor and Head of the Systems Analysis, Conception and Control Laboratory at Tunis El Manar University, National Engineering School of Tunis (ENIT) in Tunisia. He is an IEEE Senior Member and specializes in control systems, nonlinear systems, adaptive control and optimization. The multimodal transport network customers need to be oriented during their travels. A multimodal information system (MIS) can provide customers with a travel support tool, allowing them to express their demands and providing them with the appropriate responses in order to improve their travel conditions. This book develops methodologies in order to realize a MIS tool capable of ensuring the availability of permanent multimodal information for customers before and while traveling, considering passengers mobility.
Multimodal Transport Systems
Author: Slim Hammadi
Publisher: John Wiley & Sons
ISBN: 1118577256
Category : Technology & Engineering
Languages : en
Pages : 231
Book Description
The use and management of multimodal transport systems, including car-pooling and goods transportation, have become extremely complex, due to their large size (sometimes several thousand variables), the nature of their dynamic relationships as well as the many constraints to which they are subjected. The managers of these systems must ensure that the system works as efficiently as possible by managing the various causes of malfunction of the transport system (vehicle breakdowns, road obstructions, accidents, etc.). The detection and resolution of conflicts, which are particularly complex and must be dealt with in real time, are currently processed manually by operators. However, the experience and abilities of these operators are no longer sufficient when faced with the complexity of the problems to be solved. It is thus necessary to provide them with an interactive tool to help with the management of disturbances, enabling them to identify the different disturbances, to characterize and prioritize these disturbances, to process them by taking into account their specifics and to evaluate the impact of the decisions in real time. Each chapter of this book can be broken down into an approach for solving a transport problem in 3 stages, i.e. modeling the problem, creating optimization algorithms and validating the solutions. The management of a transport system calls for knowledge of a variety of theories (problem modeling tools, multi-objective problem classification, optimization algorithms, etc.). The different constraints increase its complexity drastically and thus require a model that represents as far as possible all the components of a problem in order to better identify it and propose corresponding solutions. These solutions are then evaluated according to the criteria of the transport providers as well as those of the city transport authorities. This book consists of a state of the art on innovative transport systems as well as the possibility of coordinating with the current public transport system and the authors clearly illustrate this coordination within the framework of an intelligent transport system. Contents 1. Dynamic Car-pooling, Slim Hammadi and Nawel Zangar. 2. Simulation of Urban Transport Systems, Christian Tahon, Thérèse Bonte and Alain Gibaud. 3. Real-time Fleet Management: Typology and Methods, Frédéric Semet and Gilles Goncalves. 4. Solving the Problem of Dynamic Routes by Particle Swarm, Mostefa Redouane Khouahjia, Laetitia Jourdan and El Ghazali Talbi. 5. Optimization of Traffic at a Railway Junction: Scheduling Approaches Based on Timed Petri Nets, Thomas Bourdeaud’huy and Benoît Trouillet. About the Authors Slim Hammadi is Full Professor at the Ecole Centrale de Lille in France, and Director of the LAGIS Team on Optimization of Logistic systems. He is an IEEE Senior Member and specializes in distributed optimization, multi-agent systems, supply chain management and metaheuristics. Mekki Ksouri is Professor and Head of the Systems Analysis, Conception and Control Laboratory at Tunis El Manar University, National Engineering School of Tunis (ENIT) in Tunisia. He is an IEEE Senior Member and specializes in control systems, nonlinear systems, adaptive control and optimization. The multimodal transport network customers need to be oriented during their travels. A multimodal information system (MIS) can provide customers with a travel support tool, allowing them to express their demands and providing them with the appropriate responses in order to improve their travel conditions. This book develops methodologies in order to realize a MIS tool capable of ensuring the availability of permanent multimodal information for customers before and while traveling, considering passengers mobility.
Publisher: John Wiley & Sons
ISBN: 1118577256
Category : Technology & Engineering
Languages : en
Pages : 231
Book Description
The use and management of multimodal transport systems, including car-pooling and goods transportation, have become extremely complex, due to their large size (sometimes several thousand variables), the nature of their dynamic relationships as well as the many constraints to which they are subjected. The managers of these systems must ensure that the system works as efficiently as possible by managing the various causes of malfunction of the transport system (vehicle breakdowns, road obstructions, accidents, etc.). The detection and resolution of conflicts, which are particularly complex and must be dealt with in real time, are currently processed manually by operators. However, the experience and abilities of these operators are no longer sufficient when faced with the complexity of the problems to be solved. It is thus necessary to provide them with an interactive tool to help with the management of disturbances, enabling them to identify the different disturbances, to characterize and prioritize these disturbances, to process them by taking into account their specifics and to evaluate the impact of the decisions in real time. Each chapter of this book can be broken down into an approach for solving a transport problem in 3 stages, i.e. modeling the problem, creating optimization algorithms and validating the solutions. The management of a transport system calls for knowledge of a variety of theories (problem modeling tools, multi-objective problem classification, optimization algorithms, etc.). The different constraints increase its complexity drastically and thus require a model that represents as far as possible all the components of a problem in order to better identify it and propose corresponding solutions. These solutions are then evaluated according to the criteria of the transport providers as well as those of the city transport authorities. This book consists of a state of the art on innovative transport systems as well as the possibility of coordinating with the current public transport system and the authors clearly illustrate this coordination within the framework of an intelligent transport system. Contents 1. Dynamic Car-pooling, Slim Hammadi and Nawel Zangar. 2. Simulation of Urban Transport Systems, Christian Tahon, Thérèse Bonte and Alain Gibaud. 3. Real-time Fleet Management: Typology and Methods, Frédéric Semet and Gilles Goncalves. 4. Solving the Problem of Dynamic Routes by Particle Swarm, Mostefa Redouane Khouahjia, Laetitia Jourdan and El Ghazali Talbi. 5. Optimization of Traffic at a Railway Junction: Scheduling Approaches Based on Timed Petri Nets, Thomas Bourdeaud’huy and Benoît Trouillet. About the Authors Slim Hammadi is Full Professor at the Ecole Centrale de Lille in France, and Director of the LAGIS Team on Optimization of Logistic systems. He is an IEEE Senior Member and specializes in distributed optimization, multi-agent systems, supply chain management and metaheuristics. Mekki Ksouri is Professor and Head of the Systems Analysis, Conception and Control Laboratory at Tunis El Manar University, National Engineering School of Tunis (ENIT) in Tunisia. He is an IEEE Senior Member and specializes in control systems, nonlinear systems, adaptive control and optimization. The multimodal transport network customers need to be oriented during their travels. A multimodal information system (MIS) can provide customers with a travel support tool, allowing them to express their demands and providing them with the appropriate responses in order to improve their travel conditions. This book develops methodologies in order to realize a MIS tool capable of ensuring the availability of permanent multimodal information for customers before and while traveling, considering passengers mobility.
The Geography of Transport Systems
Author: Jean-Paul Rodrigue
Publisher: Routledge
ISBN: 1136777326
Category : Science
Languages : en
Pages : 432
Book Description
Mobility is fundamental to economic and social activities such as commuting, manufacturing, or supplying energy. Each movement has an origin, a potential set of intermediate locations, a destination, and a nature which is linked with geographical attributes. Transport systems composed of infrastructures, modes and terminals are so embedded in the socio-economic life of individuals, institutions and corporations that they are often invisible to the consumer. This is paradoxical as the perceived invisibility of transportation is derived from its efficiency. Understanding how mobility is linked with geography is main the purpose of this book. The third edition of The Geography of Transport Systems has been revised and updated to provide an overview of the spatial aspects of transportation. This text provides greater discussion of security, energy, green logistics, as well as new and updated case studies, a revised content structure, and new figures. Each chapter covers a specific conceptual dimension including networks, modes, terminals, freight transportation, urban transportation and environmental impacts. A final chapter contains core methodologies linked with transport geography such as accessibility, spatial interactions, graph theory and Geographic Information Systems for transportation (GIS-T). This book provides a comprehensive and accessible introduction to the field, with a broad overview of its concepts, methods, and areas of application. The accompanying website for this text contains a useful additional material, including digital maps, PowerPoint slides, databases, and links to further reading and websites. The website can be accessed at: http://people.hofstra.edu/geotrans This text is an essential resource for undergraduates studying transport geography, as well as those interest in economic and urban geography, transport planning and engineering.
Publisher: Routledge
ISBN: 1136777326
Category : Science
Languages : en
Pages : 432
Book Description
Mobility is fundamental to economic and social activities such as commuting, manufacturing, or supplying energy. Each movement has an origin, a potential set of intermediate locations, a destination, and a nature which is linked with geographical attributes. Transport systems composed of infrastructures, modes and terminals are so embedded in the socio-economic life of individuals, institutions and corporations that they are often invisible to the consumer. This is paradoxical as the perceived invisibility of transportation is derived from its efficiency. Understanding how mobility is linked with geography is main the purpose of this book. The third edition of The Geography of Transport Systems has been revised and updated to provide an overview of the spatial aspects of transportation. This text provides greater discussion of security, energy, green logistics, as well as new and updated case studies, a revised content structure, and new figures. Each chapter covers a specific conceptual dimension including networks, modes, terminals, freight transportation, urban transportation and environmental impacts. A final chapter contains core methodologies linked with transport geography such as accessibility, spatial interactions, graph theory and Geographic Information Systems for transportation (GIS-T). This book provides a comprehensive and accessible introduction to the field, with a broad overview of its concepts, methods, and areas of application. The accompanying website for this text contains a useful additional material, including digital maps, PowerPoint slides, databases, and links to further reading and websites. The website can be accessed at: http://people.hofstra.edu/geotrans This text is an essential resource for undergraduates studying transport geography, as well as those interest in economic and urban geography, transport planning and engineering.
Transport Nodal System
Author: Adolf K.Y. Ng
Publisher: Elsevier
ISBN: 0128110686
Category : Transportation
Languages : en
Pages : 206
Book Description
Transport Nodal System provides a comprehensive introduction to the development of transport nodes and nodal systems, focusing on economic, operational, management, planning, policy, regulation and sustainability perspectives. Through a deep analysis on different types of transport nodes from diverse perspectives, this book shows the major issues and challenges that transport node planners, managers, and policymakers face, and how to address them. The book provides a clear framework for identifying the common attributes across all nodes that contribute to the efficient operations, planning, and management of transport facilities. Transport nodes such as seaports, inland terminals, airports, highways, and railroads are hubs in a multimodal transportation network that facilitate the smooth operation of passengers and freight. The book uniquely uses the transport node itself rather than a specific type of structure for a specific type of transport mode as the primary focus of analysis. While stressing the importance of transport nodes in developing efficient logistics and supply chains, the book also demonstrates that transport nodes are geographically embedded within a particular location, and that operations are inevitably affected by local factors, such as culture, the economy, the political and regulatory environment and other institutions. - Provides a unified look at multimodal transportation nodes to gain a better understanding of total system performance - Includes numerous case studies from developed and emerging economies - Uses an interdisciplinary approach where policy, regulations, economics, strategic management, operations, sustainability and technological innovation are considered together - Features chapters by scholars who specialize in different transport modes (land, sea and air) - Up-to-date outcomes utilizing author's original research provide a systematic investigation of the nodal system in both theory and practice
Publisher: Elsevier
ISBN: 0128110686
Category : Transportation
Languages : en
Pages : 206
Book Description
Transport Nodal System provides a comprehensive introduction to the development of transport nodes and nodal systems, focusing on economic, operational, management, planning, policy, regulation and sustainability perspectives. Through a deep analysis on different types of transport nodes from diverse perspectives, this book shows the major issues and challenges that transport node planners, managers, and policymakers face, and how to address them. The book provides a clear framework for identifying the common attributes across all nodes that contribute to the efficient operations, planning, and management of transport facilities. Transport nodes such as seaports, inland terminals, airports, highways, and railroads are hubs in a multimodal transportation network that facilitate the smooth operation of passengers and freight. The book uniquely uses the transport node itself rather than a specific type of structure for a specific type of transport mode as the primary focus of analysis. While stressing the importance of transport nodes in developing efficient logistics and supply chains, the book also demonstrates that transport nodes are geographically embedded within a particular location, and that operations are inevitably affected by local factors, such as culture, the economy, the political and regulatory environment and other institutions. - Provides a unified look at multimodal transportation nodes to gain a better understanding of total system performance - Includes numerous case studies from developed and emerging economies - Uses an interdisciplinary approach where policy, regulations, economics, strategic management, operations, sustainability and technological innovation are considered together - Features chapters by scholars who specialize in different transport modes (land, sea and air) - Up-to-date outcomes utilizing author's original research provide a systematic investigation of the nodal system in both theory and practice
Multimodal Level of Service Analysis for Urban Streets
Author: Richard Gerhard Dowling
Publisher: Transportation Research Board
ISBN: 0309117429
Category : Local transit
Languages : en
Pages : 122
Book Description
"TRB's National Cooperative Highway Research Program (NCHRP) Report 616: Multimodal Level of Service Analysis for Urban Streets explores a method for assessing how well an urban street serves the needs of all of its users. The method for evaluating the multimodal level of service (MMLOS) estimates the auto, bus, bicycle, and pedestrian level of service on an urban street using a combination of readily available data and data normally gathered by an agency to assess auto and transit level of service. The MMLOS user's guide was published as NCHRP Web-Only Document 128"--Publisher's description.
Publisher: Transportation Research Board
ISBN: 0309117429
Category : Local transit
Languages : en
Pages : 122
Book Description
"TRB's National Cooperative Highway Research Program (NCHRP) Report 616: Multimodal Level of Service Analysis for Urban Streets explores a method for assessing how well an urban street serves the needs of all of its users. The method for evaluating the multimodal level of service (MMLOS) estimates the auto, bus, bicycle, and pedestrian level of service on an urban street using a combination of readily available data and data normally gathered by an agency to assess auto and transit level of service. The MMLOS user's guide was published as NCHRP Web-Only Document 128"--Publisher's description.
Innovative Research in Transportation Infrastructure
Author: Dipankar Deb
Publisher: Springer
ISBN: 9811320322
Category : Technology & Engineering
Languages : en
Pages : 148
Book Description
This book presents innovative research and its applications in the development of transportation infrastructure, and discusses the latest trends, challenges and unsolved problems in the field of transport technology. The book also presents a range of solutions to problems faced by the rapidly growing economies of the developing world. Core challenges confronting policymakers in the field of transport technology include traffic congestion, air pollution, traffic fatalities and injuries, and petroleum dependence. At the same time, the increased use of hybrid and electric vehicles is changing consumer needs and behaviors. The solutions discussed in this book will encourage and inspire researchers, industry professionals and policymakers alike to put these methods into practice.
Publisher: Springer
ISBN: 9811320322
Category : Technology & Engineering
Languages : en
Pages : 148
Book Description
This book presents innovative research and its applications in the development of transportation infrastructure, and discusses the latest trends, challenges and unsolved problems in the field of transport technology. The book also presents a range of solutions to problems faced by the rapidly growing economies of the developing world. Core challenges confronting policymakers in the field of transport technology include traffic congestion, air pollution, traffic fatalities and injuries, and petroleum dependence. At the same time, the increased use of hybrid and electric vehicles is changing consumer needs and behaviors. The solutions discussed in this book will encourage and inspire researchers, industry professionals and policymakers alike to put these methods into practice.
Introduction to Transportation Analysis, Modeling and Simulation
Author: Dietmar P.F. Möller
Publisher: Springer
ISBN: 1447156374
Category : Computers
Languages : en
Pages : 356
Book Description
This comprehensive textbook/reference provides an in-depth overview of the key aspects of transportation analysis, with an emphasis on modeling real transportation systems and executing the models. Topics and features: presents comprehensive review questions at the end of each chapter, together with detailed case studies, useful links, references and suggestions for further reading; supplies a variety of teaching support materials at the book’s webpage on Springer.com, including a complete set of lecture slides; examines the classification of models used for multimodal transportation systems, and reviews the models and evaluation methods used in transportation planning; explains traffic assignment to road networks, and describes computer simulation integration platforms and their use in the transportation systems sector; provides an overview of transportation simulation tools, and discusses the critical issues in the design, development and use of the simulation models.
Publisher: Springer
ISBN: 1447156374
Category : Computers
Languages : en
Pages : 356
Book Description
This comprehensive textbook/reference provides an in-depth overview of the key aspects of transportation analysis, with an emphasis on modeling real transportation systems and executing the models. Topics and features: presents comprehensive review questions at the end of each chapter, together with detailed case studies, useful links, references and suggestions for further reading; supplies a variety of teaching support materials at the book’s webpage on Springer.com, including a complete set of lecture slides; examines the classification of models used for multimodal transportation systems, and reviews the models and evaluation methods used in transportation planning; explains traffic assignment to road networks, and describes computer simulation integration platforms and their use in the transportation systems sector; provides an overview of transportation simulation tools, and discusses the critical issues in the design, development and use of the simulation models.
Geocomputation with R
Author: Robin Lovelace
Publisher: CRC Press
ISBN: 1351396900
Category : Mathematics
Languages : en
Pages : 335
Book Description
Geocomputation with R is for people who want to analyze, visualize and model geographic data with open source software. It is based on R, a statistical programming language that has powerful data processing, visualization, and geospatial capabilities. The book equips you with the knowledge and skills to tackle a wide range of issues manifested in geographic data, including those with scientific, societal, and environmental implications. This book will interest people from many backgrounds, especially Geographic Information Systems (GIS) users interested in applying their domain-specific knowledge in a powerful open source language for data science, and R users interested in extending their skills to handle spatial data. The book is divided into three parts: (I) Foundations, aimed at getting you up-to-speed with geographic data in R, (II) extensions, which covers advanced techniques, and (III) applications to real-world problems. The chapters cover progressively more advanced topics, with early chapters providing strong foundations on which the later chapters build. Part I describes the nature of spatial datasets in R and methods for manipulating them. It also covers geographic data import/export and transforming coordinate reference systems. Part II represents methods that build on these foundations. It covers advanced map making (including web mapping), "bridges" to GIS, sharing reproducible code, and how to do cross-validation in the presence of spatial autocorrelation. Part III applies the knowledge gained to tackle real-world problems, including representing and modeling transport systems, finding optimal locations for stores or services, and ecological modeling. Exercises at the end of each chapter give you the skills needed to tackle a range of geospatial problems. Solutions for each chapter and supplementary materials providing extended examples are available at https://geocompr.github.io/geocompkg/articles/. Dr. Robin Lovelace is a University Academic Fellow at the University of Leeds, where he has taught R for geographic research over many years, with a focus on transport systems. Dr. Jakub Nowosad is an Assistant Professor in the Department of Geoinformation at the Adam Mickiewicz University in Poznan, where his focus is on the analysis of large datasets to understand environmental processes. Dr. Jannes Muenchow is a Postdoctoral Researcher in the GIScience Department at the University of Jena, where he develops and teaches a range of geographic methods, with a focus on ecological modeling, statistical geocomputing, and predictive mapping. All three are active developers and work on a number of R packages, including stplanr, sabre, and RQGIS.
Publisher: CRC Press
ISBN: 1351396900
Category : Mathematics
Languages : en
Pages : 335
Book Description
Geocomputation with R is for people who want to analyze, visualize and model geographic data with open source software. It is based on R, a statistical programming language that has powerful data processing, visualization, and geospatial capabilities. The book equips you with the knowledge and skills to tackle a wide range of issues manifested in geographic data, including those with scientific, societal, and environmental implications. This book will interest people from many backgrounds, especially Geographic Information Systems (GIS) users interested in applying their domain-specific knowledge in a powerful open source language for data science, and R users interested in extending their skills to handle spatial data. The book is divided into three parts: (I) Foundations, aimed at getting you up-to-speed with geographic data in R, (II) extensions, which covers advanced techniques, and (III) applications to real-world problems. The chapters cover progressively more advanced topics, with early chapters providing strong foundations on which the later chapters build. Part I describes the nature of spatial datasets in R and methods for manipulating them. It also covers geographic data import/export and transforming coordinate reference systems. Part II represents methods that build on these foundations. It covers advanced map making (including web mapping), "bridges" to GIS, sharing reproducible code, and how to do cross-validation in the presence of spatial autocorrelation. Part III applies the knowledge gained to tackle real-world problems, including representing and modeling transport systems, finding optimal locations for stores or services, and ecological modeling. Exercises at the end of each chapter give you the skills needed to tackle a range of geospatial problems. Solutions for each chapter and supplementary materials providing extended examples are available at https://geocompr.github.io/geocompkg/articles/. Dr. Robin Lovelace is a University Academic Fellow at the University of Leeds, where he has taught R for geographic research over many years, with a focus on transport systems. Dr. Jakub Nowosad is an Assistant Professor in the Department of Geoinformation at the Adam Mickiewicz University in Poznan, where his focus is on the analysis of large datasets to understand environmental processes. Dr. Jannes Muenchow is a Postdoctoral Researcher in the GIScience Department at the University of Jena, where he develops and teaches a range of geographic methods, with a focus on ecological modeling, statistical geocomputing, and predictive mapping. All three are active developers and work on a number of R packages, including stplanr, sabre, and RQGIS.
Soft Computing for Sustainability Science
Author: Carlos Cruz Corona
Publisher: Springer
ISBN: 3319623591
Category : Technology & Engineering
Languages : en
Pages : 360
Book Description
This book offers a timely snapshot of soft computing methodologies and their applications to various problems related to sustainability, including electric energy consumption; fault diagnosis; vessel fuel consumption; determining the best sites for new malls; maritime port projects; and ad-hoc vehicular networks. Further, it demonstrates how metaheuristics and machine learning methods, fuzzy linear programming, neural networks, computing with words, linguistic models and other soft computing methods can be efficiently used to solve real-world problems. Intended as a practice-oriented guide for students, researchers, and professionals working at the interface between computer science, industrial engineering, naval engineering, agriculture, and sustainable development / climate change research, it provides readers with a set of intelligent solutions, helping them answer a range of emerging questions related to sustainability.
Publisher: Springer
ISBN: 3319623591
Category : Technology & Engineering
Languages : en
Pages : 360
Book Description
This book offers a timely snapshot of soft computing methodologies and their applications to various problems related to sustainability, including electric energy consumption; fault diagnosis; vessel fuel consumption; determining the best sites for new malls; maritime port projects; and ad-hoc vehicular networks. Further, it demonstrates how metaheuristics and machine learning methods, fuzzy linear programming, neural networks, computing with words, linguistic models and other soft computing methods can be efficiently used to solve real-world problems. Intended as a practice-oriented guide for students, researchers, and professionals working at the interface between computer science, industrial engineering, naval engineering, agriculture, and sustainable development / climate change research, it provides readers with a set of intelligent solutions, helping them answer a range of emerging questions related to sustainability.
Studies in the Economics of Transportation
Author: Martin J. Beckmann
Publisher:
ISBN:
Category : Railroads
Languages : en
Pages : 232
Book Description
Publisher:
ISBN:
Category : Railroads
Languages : en
Pages : 232
Book Description
The Multi-Agent Transport Simulation MATSim
Author: Andreas Horni
Publisher: Ubiquity Press
ISBN: 190918876X
Category : Technology & Engineering
Languages : en
Pages : 620
Book Description
The MATSim (Multi-Agent Transport Simulation) software project was started around 2006 with the goal of generating traffic and congestion patterns by following individual synthetic travelers through their daily or weekly activity programme. It has since then evolved from a collection of stand-alone C++ programs to an integrated Java-based framework which is publicly hosted, open-source available, automatically regression tested. It is currently used by about 40 groups throughout the world. This book takes stock of the current status. The first part of the book gives an introduction to the most important concepts, with the intention of enabling a potential user to set up and run basic simulations. The second part of the book describes how the basic functionality can be extended, for example by adding schedule-based public transit, electric or autonomous cars, paratransit, or within-day replanning. For each extension, the text provides pointers to the additional documentation and to the code base. It is also discussed how people with appropriate Java programming skills can write their own extensions, and plug them into the MATSim core. The project has started from the basic idea that traffic is a consequence of human behavior, and thus humans and their behavior should be the starting point of all modelling, and with the intuition that when simulations with 100 million particles are possible in computational physics, then behavior-oriented simulations with 10 million travelers should be possible in travel behavior research. The initial implementations thus combined concepts from computational physics and complex adaptive systems with concepts from travel behavior research. The third part of the book looks at theoretical concepts that are able to describe important aspects of the simulation system; for example, under certain conditions the code becomes a Monte Carlo engine sampling from a discrete choice model. Another important aspect is the interpretation of the MATSim score as utility in the microeconomic sense, opening up a connection to benefit cost analysis. Finally, the book collects use cases as they have been undertaken with MATSim. All current users of MATSim were invited to submit their work, and many followed with sometimes crisp and short and sometimes longer contributions, always with pointers to additional references. We hope that the book will become an invitation to explore, to build and to extend agent-based modeling of travel behavior from the stable and well tested core of MATSim documented here.
Publisher: Ubiquity Press
ISBN: 190918876X
Category : Technology & Engineering
Languages : en
Pages : 620
Book Description
The MATSim (Multi-Agent Transport Simulation) software project was started around 2006 with the goal of generating traffic and congestion patterns by following individual synthetic travelers through their daily or weekly activity programme. It has since then evolved from a collection of stand-alone C++ programs to an integrated Java-based framework which is publicly hosted, open-source available, automatically regression tested. It is currently used by about 40 groups throughout the world. This book takes stock of the current status. The first part of the book gives an introduction to the most important concepts, with the intention of enabling a potential user to set up and run basic simulations. The second part of the book describes how the basic functionality can be extended, for example by adding schedule-based public transit, electric or autonomous cars, paratransit, or within-day replanning. For each extension, the text provides pointers to the additional documentation and to the code base. It is also discussed how people with appropriate Java programming skills can write their own extensions, and plug them into the MATSim core. The project has started from the basic idea that traffic is a consequence of human behavior, and thus humans and their behavior should be the starting point of all modelling, and with the intuition that when simulations with 100 million particles are possible in computational physics, then behavior-oriented simulations with 10 million travelers should be possible in travel behavior research. The initial implementations thus combined concepts from computational physics and complex adaptive systems with concepts from travel behavior research. The third part of the book looks at theoretical concepts that are able to describe important aspects of the simulation system; for example, under certain conditions the code becomes a Monte Carlo engine sampling from a discrete choice model. Another important aspect is the interpretation of the MATSim score as utility in the microeconomic sense, opening up a connection to benefit cost analysis. Finally, the book collects use cases as they have been undertaken with MATSim. All current users of MATSim were invited to submit their work, and many followed with sometimes crisp and short and sometimes longer contributions, always with pointers to additional references. We hope that the book will become an invitation to explore, to build and to extend agent-based modeling of travel behavior from the stable and well tested core of MATSim documented here.