On the structure of general algebras and its applications

On the structure of general algebras and its applications PDF Author: Young Joo Seo
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 79

Get Book Here

Book Description
In this thesis, we discuss some structural theory of a d-algebra which is a generalization of a BCK-algebra, and wedis uss analytic real algebras. We investigate several conditions for analytic real algebras to be d-algebras. Moreover, we introduce the notion of a Smarandacheness to BCI-algebras, and obtain several properties on Smarandache fuzzy BCI-algebras.

On the structure of general algebras and its applications

On the structure of general algebras and its applications PDF Author: Young Joo Seo
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 79

Get Book Here

Book Description
In this thesis, we discuss some structural theory of a d-algebra which is a generalization of a BCK-algebra, and wedis uss analytic real algebras. We investigate several conditions for analytic real algebras to be d-algebras. Moreover, we introduce the notion of a Smarandacheness to BCI-algebras, and obtain several properties on Smarandache fuzzy BCI-algebras.

Algebraic Structures and Applications

Algebraic Structures and Applications PDF Author: Sergei Silvestrov
Publisher: Springer Nature
ISBN: 3030418502
Category : Mathematics
Languages : en
Pages : 976

Get Book Here

Book Description
This book explores the latest advances in algebraic structures and applications, and focuses on mathematical concepts, methods, structures, problems, algorithms and computational methods important in the natural sciences, engineering and modern technologies. In particular, it features mathematical methods and models of non-commutative and non-associative algebras, hom-algebra structures, generalizations of differential calculus, quantum deformations of algebras, Lie algebras and their generalizations, semi-groups and groups, constructive algebra, matrix analysis and its interplay with topology, knot theory, dynamical systems, functional analysis, stochastic processes, perturbation analysis of Markov chains, and applications in network analysis, financial mathematics and engineering mathematics. The book addresses both theory and applications, which are illustrated with a wealth of ideas, proofs and examples to help readers understand the material and develop new mathematical methods and concepts of their own. The high-quality chapters share a wealth of new methods and results, review cutting-edge research and discuss open problems and directions for future research. Taken together, they offer a source of inspiration for a broad range of researchers and research students whose work involves algebraic structures and their applications, probability theory and mathematical statistics, applied mathematics, engineering mathematics and related areas.

Classical Hopf Algebras and Their Applications

Classical Hopf Algebras and Their Applications PDF Author: Pierre Cartier
Publisher: Springer Nature
ISBN: 3030778452
Category : Mathematics
Languages : en
Pages : 277

Get Book Here

Book Description
This book is dedicated to the structure and combinatorics of classical Hopf algebras. Its main focus is on commutative and cocommutative Hopf algebras, such as algebras of representative functions on groups and enveloping algebras of Lie algebras, as explored in the works of Borel, Cartier, Hopf and others in the 1940s and 50s. The modern and systematic treatment uses the approach of natural operations, illuminating the structure of Hopf algebras by means of their endomorphisms and their combinatorics. Emphasizing notions such as pseudo-coproducts, characteristic endomorphisms, descent algebras and Lie idempotents, the text also covers the important case of enveloping algebras of pre-Lie algebras. A wide range of applications are surveyed, highlighting the main ideas and fundamental results. Suitable as a textbook for masters or doctoral level programs, this book will be of interest to algebraists and anyone working in one of the fields of application of Hopf algebras.

Abstract Algebra

Abstract Algebra PDF Author: Stephen Lovett
Publisher: CRC Press
ISBN: 1482248913
Category : Mathematics
Languages : en
Pages : 717

Get Book Here

Book Description
A Discovery-Based Approach to Learning about Algebraic StructuresAbstract Algebra: Structures and Applications helps students understand the abstraction of modern algebra. It emphasizes the more general concept of an algebraic structure while simultaneously covering applications. The text can be used in a variety of courses, from a one-semester int

Evolution Algebras and Their Applications

Evolution Algebras and Their Applications PDF Author: Jianjun Paul Tian
Publisher: Springer Science & Business Media
ISBN: 3540742832
Category : Mathematics
Languages : en
Pages : 136

Get Book Here

Book Description
Behind genetics and Markov chains, there is an intrinsic algebraic structure. It is defined as a type of new algebra: as evolution algebra. This concept lies between algebras and dynamical systems. Algebraically, evolution algebras are non-associative Banach algebras; dynamically, they represent discrete dynamical systems. Evolution algebras have many connections with other mathematical fields including graph theory, group theory, stochastic processes, dynamical systems, knot theory, 3-manifolds, and the study of the Ihara-Selberg zeta function. In this volume the foundation of evolution algebra theory and applications in non-Mendelian genetics and Markov chains is developed, with pointers to some further research topics.

Banach Algebras and the General Theory of *-Algebras: Volume 2, *-Algebras

Banach Algebras and the General Theory of *-Algebras: Volume 2, *-Algebras PDF Author: Theodore W. Palmer
Publisher: Cambridge University Press
ISBN: 9780521366380
Category : Mathematics
Languages : en
Pages : 846

Get Book Here

Book Description
This second of two volumes gives a modern exposition of the theory of Banach algebras.

Topological Algebras and their Applications

Topological Algebras and their Applications PDF Author: Alexander Katz
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110413558
Category : Mathematics
Languages : en
Pages : 318

Get Book Here

Book Description
Proceedings of the 8th International Conference of Topological Algebras and Their Applications (ICTAA-2014), held on May 26-30, 2014 in Playa de Villas de Mar Beach, dedicated to the memory of Anastasios Mallios (Athens, Greece). This series of conferences started in 1999 in Tartu, Estonia and were subsequently held in Rabat, Moroco (2000), Oulu, Finland (2001), Oaxaca, Mexico (2002), Bedlewo, Poland (2003), Athens, Greece (2005) and Tartu, Estonia (2008 and 2013). The topics of the conference include all areas of mathematics, connected with (preferably general) topological algebras and their applications, including all kinds of topological-algebraic structures as topological linear spaces, topological rings, topological modules, topological groups and semigroups; bornological-algebraic structures such as bornological linear spaces, bornological algebras, bornological groups, bornological rings and modules; algebraic and topological K-theory; topological module bundles, sheaves and others. Contents Some results on spectral properties of unital algebras and on the algebra of linear operators on a unital algebra Descriptions of all closed maximal one-sided ideals in topological algebras On non self-adjoint operators defined by Riesz bases in Hilbert and rigged Hilbert spaces Functional calculus on algebras of operators generated by a self-adjoint operator in Pontryagin space Π1 On Gelfand-Naimark type Theorems for unital abelian complex and real locally C*-, and locally JB-algebras Multipliers and strictly real topological algebras Multipliers in some perfect locally m-pseudo-convex algebras Wedderburn structure theorems for two-sided locally m-convex H*-algebras Homologically best modules in classical and quantized functional analysis Operator Grüss inequality Main embedding theorems for symmetric spaces of measurable functions Mapping class groups are linear Subnormable A-convex algebras Commutative BP*-algebras and Gelfand-Naimark’s theorem Discrete nonclosed subsets in maximally nondiscrete topological groups Faithfully representable topological *-algebras: some spectral properties On continuity of complementors in topological algebras Dominated ergodic theorem for isometries of non-commutative Lp-spaces, 1 p p ≠ 2 Ranks and the approximate n-th root property of C*-algebras Dense ideals in topological algebras: some results and open problems

Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics

Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics PDF Author: D.H. Sattinger
Publisher: Springer Science & Business Media
ISBN: 1475719108
Category : Mathematics
Languages : en
Pages : 218

Get Book Here

Book Description
This book is intended as an introductory text on the subject of Lie groups and algebras and their role in various fields of mathematics and physics. It is written by and for researchers who are primarily analysts or physicists, not algebraists or geometers. Not that we have eschewed the algebraic and geo metric developments. But we wanted to present them in a concrete way and to show how the subject interacted with physics, geometry, and mechanics. These interactions are, of course, manifold; we have discussed many of them here-in particular, Riemannian geometry, elementary particle physics, sym metries of differential equations, completely integrable Hamiltonian systems, and spontaneous symmetry breaking. Much ofthe material we have treated is standard and widely available; but we have tried to steer a course between the descriptive approach such as found in Gilmore and Wybourne, and the abstract mathematical approach of Helgason or Jacobson. Gilmore and Wybourne address themselves to the physics community whereas Helgason and Jacobson address themselves to the mathematical community. This book is an attempt to synthesize the two points of view and address both audiences simultaneously. We wanted to present the subject in a way which is at once intuitive, geometric, applications oriented, mathematically rigorous, and accessible to students and researchers without an extensive background in physics, algebra, or geometry.

Geometric Theory of Generalized Functions with Applications to General Relativity

Geometric Theory of Generalized Functions with Applications to General Relativity PDF Author: Michael Grosser
Publisher: Springer Science & Business Media
ISBN: 9781402001451
Category : Mathematics
Languages : en
Pages : 556

Get Book Here

Book Description
This work provides the first comprehensive introduction to the nonlinear theory of generalized functions (in the sense of Colombeau's construction) on differentiable manifolds. Particular emphasis is laid on a diffeomorphism invariant geometric approach to embedding the space of Schwartz distributions into algebras of generalized functions. The foundations of a `nonlinear distributional geometry' are developed, supplying a solid base for an increasing number of applications of algebras of generalized functions to questions of a primarily geometric mature, in particular in mathematical physics. Applications of the resulting theory to symmetry group analysis of differential equations and the theory of general relativity are presented in separate chapters. These features distinguish the present volume from earlier introductory texts and monographs on the subject. Audience: The book will be of interest to graduate students as well as to researchers in functional analysis, partial differential equations, differential geometry, and mathematical physics.

Banach Algebras and the General Theory of *-Algebras: Volume 1, Algebras and Banach Algebras

Banach Algebras and the General Theory of *-Algebras: Volume 1, Algebras and Banach Algebras PDF Author: Theodore W. Palmer
Publisher: Cambridge University Press
ISBN: 9780521366373
Category : Mathematics
Languages : en
Pages : 820

Get Book Here

Book Description
This is the first volume of a two volume set that provides a modern account of basic Banach algebra theory including all known results on general Banach *-algebras. This account emphasizes the role of *-algebraic structure and explores the algebraic results that underlie the theory of Banach algebras and *-algebras. The first volume, which contains previously unpublished results, is an independent, self-contained reference on Banach algebra theory. Each topic is treated in the maximum interesting generality within the framework of some class of complex algebras rather than topological algebras. Proofs are presented in complete detail at a level accessible to graduate students. The book contains a wealth of historical comments, background material, examples, particularly in noncommutative harmonic analysis, and an extensive bibliography. Volume II is forthcoming.