Author: F. R. Cohen
Publisher: Springer
ISBN: 3540379851
Category : Mathematics
Languages : en
Pages : 501
Book Description
The Homology of Iterated Loop Spaces
Author: F. R. Cohen
Publisher: Springer
ISBN: 3540379851
Category : Mathematics
Languages : en
Pages : 501
Book Description
Publisher: Springer
ISBN: 3540379851
Category : Mathematics
Languages : en
Pages : 501
Book Description
The Geometry of Iterated Loop Spaces
Author: J.P. May
Publisher: Springer
ISBN: 3540376038
Category : Mathematics
Languages : en
Pages : 184
Book Description
Publisher: Springer
ISBN: 3540376038
Category : Mathematics
Languages : en
Pages : 184
Book Description
Infinite Loop Spaces
Author: John Frank Adams
Publisher: Princeton University Press
ISBN: 9780691082066
Category : Mathematics
Languages : en
Pages : 232
Book Description
The theory of infinite loop spaces has been the center of much recent activity in algebraic topology. Frank Adams surveys this extensive work for researchers and students. Among the major topics covered are generalized cohomology theories and spectra; infinite-loop space machines in the sense of Boadman-Vogt, May, and Segal; localization and group completion; the transfer; the Adams conjecture and several proofs of it; and the recent theories of Adams and Priddy and of Madsen, Snaith, and Tornehave.
Publisher: Princeton University Press
ISBN: 9780691082066
Category : Mathematics
Languages : en
Pages : 232
Book Description
The theory of infinite loop spaces has been the center of much recent activity in algebraic topology. Frank Adams surveys this extensive work for researchers and students. Among the major topics covered are generalized cohomology theories and spectra; infinite-loop space machines in the sense of Boadman-Vogt, May, and Segal; localization and group completion; the transfer; the Adams conjecture and several proofs of it; and the recent theories of Adams and Priddy and of Madsen, Snaith, and Tornehave.
Algebraic Methods in Unstable Homotopy Theory
Author: Joseph Neisendorfer
Publisher: Cambridge University Press
ISBN: 1139482599
Category : Mathematics
Languages : en
Pages : 575
Book Description
The most modern and thorough treatment of unstable homotopy theory available. The focus is on those methods from algebraic topology which are needed in the presentation of results, proven by Cohen, Moore, and the author, on the exponents of homotopy groups. The author introduces various aspects of unstable homotopy theory, including: homotopy groups with coefficients; localization and completion; the Hopf invariants of Hilton, James, and Toda; Samelson products; homotopy Bockstein spectral sequences; graded Lie algebras; differential homological algebra; and the exponent theorems concerning the homotopy groups of spheres and Moore spaces. This book is suitable for a course in unstable homotopy theory, following a first course in homotopy theory. It is also a valuable reference for both experts and graduate students wishing to enter the field.
Publisher: Cambridge University Press
ISBN: 1139482599
Category : Mathematics
Languages : en
Pages : 575
Book Description
The most modern and thorough treatment of unstable homotopy theory available. The focus is on those methods from algebraic topology which are needed in the presentation of results, proven by Cohen, Moore, and the author, on the exponents of homotopy groups. The author introduces various aspects of unstable homotopy theory, including: homotopy groups with coefficients; localization and completion; the Hopf invariants of Hilton, James, and Toda; Samelson products; homotopy Bockstein spectral sequences; graded Lie algebras; differential homological algebra; and the exponent theorems concerning the homotopy groups of spheres and Moore spaces. This book is suitable for a course in unstable homotopy theory, following a first course in homotopy theory. It is also a valuable reference for both experts and graduate students wishing to enter the field.
Homology of Classical Groups Over Finite Fields and Their Associated Infinite Loop Spaces
Author: Z. Fiedorowicz
Publisher: Springer
ISBN: 3540357351
Category : Mathematics
Languages : en
Pages : 441
Book Description
Publisher: Springer
ISBN: 3540357351
Category : Mathematics
Languages : en
Pages : 441
Book Description
The Homology of Hopf Spaces
Author: R.M. Kane
Publisher: North Holland
ISBN:
Category : Mathematics
Languages : en
Pages : 504
Book Description
This exposition of the theory of finite Hopf spaces details the development of the subject over the last thirty years, with the homology of such spaces as its main theme. The three chief areas of study in the volume are: - The study of finite H-spaces with torsion free integral homology. - The study of finite H-spaces with homology torsion. - The construction of finite H-spaces.
Publisher: North Holland
ISBN:
Category : Mathematics
Languages : en
Pages : 504
Book Description
This exposition of the theory of finite Hopf spaces details the development of the subject over the last thirty years, with the homology of such spaces as its main theme. The three chief areas of study in the volume are: - The study of finite H-spaces with torsion free integral homology. - The study of finite H-spaces with homology torsion. - The construction of finite H-spaces.
Handbook of Algebraic Topology
Author: I.M. James
Publisher: Elsevier
ISBN: 0080532985
Category : Mathematics
Languages : en
Pages : 1336
Book Description
Algebraic topology (also known as homotopy theory) is a flourishing branch of modern mathematics. It is very much an international subject and this is reflected in the background of the 36 leading experts who have contributed to the Handbook. Written for the reader who already has a grounding in the subject, the volume consists of 27 expository surveys covering the most active areas of research. They provide the researcher with an up-to-date overview of this exciting branch of mathematics.
Publisher: Elsevier
ISBN: 0080532985
Category : Mathematics
Languages : en
Pages : 1336
Book Description
Algebraic topology (also known as homotopy theory) is a flourishing branch of modern mathematics. It is very much an international subject and this is reflected in the background of the 36 leading experts who have contributed to the Handbook. Written for the reader who already has a grounding in the subject, the volume consists of 27 expository surveys covering the most active areas of research. They provide the researcher with an up-to-date overview of this exciting branch of mathematics.
Algebraic Topology. Waterloo 1978
Author: P. Hoffman
Publisher: Springer
ISBN: 3540350098
Category : Mathematics
Languages : en
Pages : 668
Book Description
Publisher: Springer
ISBN: 3540350098
Category : Mathematics
Languages : en
Pages : 668
Book Description
Algebraic Topology
Author: Arunas Liulevicius
Publisher: American Mathematical Soc.
ISBN: 0821814222
Category : Mathematics
Languages : en
Pages : 302
Book Description
Publisher: American Mathematical Soc.
ISBN: 0821814222
Category : Mathematics
Languages : en
Pages : 302
Book Description
Handbook of Homotopy Theory
Author: Haynes Miller
Publisher: CRC Press
ISBN: 1351251600
Category : Mathematics
Languages : en
Pages : 1142
Book Description
The Handbook of Homotopy Theory provides a panoramic view of an active area in mathematics that is currently seeing dramatic solutions to long-standing open problems, and is proving itself of increasing importance across many other mathematical disciplines. The origins of the subject date back to work of Henri Poincaré and Heinz Hopf in the early 20th century, but it has seen enormous progress in the 21st century. A highlight of this volume is an introduction to and diverse applications of the newly established foundational theory of ¥ -categories. The coverage is vast, ranging from axiomatic to applied, from foundational to computational, and includes surveys of applications both geometric and algebraic. The contributors are among the most active and creative researchers in the field. The 22 chapters by 31 contributors are designed to address novices, as well as established mathematicians, interested in learning the state of the art in this field, whose methods are of increasing importance in many other areas.
Publisher: CRC Press
ISBN: 1351251600
Category : Mathematics
Languages : en
Pages : 1142
Book Description
The Handbook of Homotopy Theory provides a panoramic view of an active area in mathematics that is currently seeing dramatic solutions to long-standing open problems, and is proving itself of increasing importance across many other mathematical disciplines. The origins of the subject date back to work of Henri Poincaré and Heinz Hopf in the early 20th century, but it has seen enormous progress in the 21st century. A highlight of this volume is an introduction to and diverse applications of the newly established foundational theory of ¥ -categories. The coverage is vast, ranging from axiomatic to applied, from foundational to computational, and includes surveys of applications both geometric and algebraic. The contributors are among the most active and creative researchers in the field. The 22 chapters by 31 contributors are designed to address novices, as well as established mathematicians, interested in learning the state of the art in this field, whose methods are of increasing importance in many other areas.