Author: Kiran S. Kedlaya
Publisher: Cambridge University Press
ISBN: 1139489208
Category : Mathematics
Languages : en
Pages : 399
Book Description
Over the last 50 years the theory of p-adic differential equations has grown into an active area of research in its own right, and has important applications to number theory and to computer science. This book, the first comprehensive and unified introduction to the subject, improves and simplifies existing results as well as including original material. Based on a course given by the author at MIT, this modern treatment is accessible to graduate students and researchers. Exercises are included at the end of each chapter to help the reader review the material, and the author also provides detailed references to the literature to aid further study.
p-adic Differential Equations
Author: Kiran S. Kedlaya
Publisher: Cambridge University Press
ISBN: 1139489208
Category : Mathematics
Languages : en
Pages : 399
Book Description
Over the last 50 years the theory of p-adic differential equations has grown into an active area of research in its own right, and has important applications to number theory and to computer science. This book, the first comprehensive and unified introduction to the subject, improves and simplifies existing results as well as including original material. Based on a course given by the author at MIT, this modern treatment is accessible to graduate students and researchers. Exercises are included at the end of each chapter to help the reader review the material, and the author also provides detailed references to the literature to aid further study.
Publisher: Cambridge University Press
ISBN: 1139489208
Category : Mathematics
Languages : en
Pages : 399
Book Description
Over the last 50 years the theory of p-adic differential equations has grown into an active area of research in its own right, and has important applications to number theory and to computer science. This book, the first comprehensive and unified introduction to the subject, improves and simplifies existing results as well as including original material. Based on a course given by the author at MIT, this modern treatment is accessible to graduate students and researchers. Exercises are included at the end of each chapter to help the reader review the material, and the author also provides detailed references to the literature to aid further study.
Author:
Publisher: World Scientific
ISBN:
Category :
Languages : en
Pages : 1191
Book Description
Publisher: World Scientific
ISBN:
Category :
Languages : en
Pages : 1191
Book Description
P-adic Monodromy and the Birch and Swinnerton-Dyer Conjecture
Author: Glenn Stevens
Publisher: American Mathematical Soc.
ISBN: 0821851802
Category : Mathematics
Languages : en
Pages : 334
Book Description
The workshop aimed to deepen understanding of the interdependence between p-adic Hodge theory, analogues of the conjecture of Birch and Swinnerton-Dyer, p-adic uniformization theory, p-adic differential equations, and deformations of Gaels representations.
Publisher: American Mathematical Soc.
ISBN: 0821851802
Category : Mathematics
Languages : en
Pages : 334
Book Description
The workshop aimed to deepen understanding of the interdependence between p-adic Hodge theory, analogues of the conjecture of Birch and Swinnerton-Dyer, p-adic uniformization theory, p-adic differential equations, and deformations of Gaels representations.
Modular Curves and Abelian Varieties
Author: John Cremona
Publisher: Birkhäuser
ISBN: 3034879199
Category : Mathematics
Languages : en
Pages : 291
Book Description
This book presents lectures from a conference on "Modular Curves and Abelian Varieties'' at the Centre de Recerca Matemtica (Bellaterra, Barcelona). The articles in this volume present the latest achievements in this extremely active field and will be of interest both to specialists and to students and researchers. Many contributions focus on generalizations of the Shimura-Taniyama conjecture to varieties such as elliptic Q-curves and Abelian varieties of GL_2-type. The book also includes several key articles in the subject that do not correspond to conference lectures.
Publisher: Birkhäuser
ISBN: 3034879199
Category : Mathematics
Languages : en
Pages : 291
Book Description
This book presents lectures from a conference on "Modular Curves and Abelian Varieties'' at the Centre de Recerca Matemtica (Bellaterra, Barcelona). The articles in this volume present the latest achievements in this extremely active field and will be of interest both to specialists and to students and researchers. Many contributions focus on generalizations of the Shimura-Taniyama conjecture to varieties such as elliptic Q-curves and Abelian varieties of GL_2-type. The book also includes several key articles in the subject that do not correspond to conference lectures.
De Rham Cohomology of Differential Modules on Algebraic Varieties
Author: Yves André
Publisher: Birkhäuser
ISBN: 3034883366
Category : Mathematics
Languages : en
Pages : 223
Book Description
"...A nice feature of the book [is] that at various points the authors provide examples, or rather counterexamples, that clearly show what can go wrong...This is a nicely-written book [that] studies algebraic differential modules in several variables." --Mathematical Reviews
Publisher: Birkhäuser
ISBN: 3034883366
Category : Mathematics
Languages : en
Pages : 223
Book Description
"...A nice feature of the book [is] that at various points the authors provide examples, or rather counterexamples, that clearly show what can go wrong...This is a nicely-written book [that] studies algebraic differential modules in several variables." --Mathematical Reviews
Nonarchimedean and Tropical Geometry
Author: Matthew Baker
Publisher: Springer
ISBN: 3319309455
Category : Mathematics
Languages : en
Pages : 534
Book Description
This volume grew out of two Simons Symposia on "Nonarchimedean and tropical geometry" which took place on the island of St. John in April 2013 and in Puerto Rico in February 2015. Each meeting gathered a small group of experts working near the interface between tropical geometry and nonarchimedean analytic spaces for a series of inspiring and provocative lectures on cutting edge research, interspersed with lively discussions and collaborative work in small groups. The articles collected here, which include high-level surveys as well as original research, mirror the main themes of the two Symposia. Topics covered in this volume include: Differential forms and currents, and solutions of Monge-Ampere type differential equations on Berkovich spaces and their skeletons; The homotopy types of nonarchimedean analytifications; The existence of "faithful tropicalizations" which encode the topology and geometry of analytifications; Relations between nonarchimedean analytic spaces and algebraic geometry, including logarithmic schemes, birational geometry, and the geometry of algebraic curves; Extended notions of tropical varieties which relate to Huber's theory of adic spaces analogously to the way that usual tropical varieties relate to Berkovich spaces; and Relations between nonarchimedean geometry and combinatorics, including deep and fascinating connections between matroid theory, tropical geometry, and Hodge theory.
Publisher: Springer
ISBN: 3319309455
Category : Mathematics
Languages : en
Pages : 534
Book Description
This volume grew out of two Simons Symposia on "Nonarchimedean and tropical geometry" which took place on the island of St. John in April 2013 and in Puerto Rico in February 2015. Each meeting gathered a small group of experts working near the interface between tropical geometry and nonarchimedean analytic spaces for a series of inspiring and provocative lectures on cutting edge research, interspersed with lively discussions and collaborative work in small groups. The articles collected here, which include high-level surveys as well as original research, mirror the main themes of the two Symposia. Topics covered in this volume include: Differential forms and currents, and solutions of Monge-Ampere type differential equations on Berkovich spaces and their skeletons; The homotopy types of nonarchimedean analytifications; The existence of "faithful tropicalizations" which encode the topology and geometry of analytifications; Relations between nonarchimedean analytic spaces and algebraic geometry, including logarithmic schemes, birational geometry, and the geometry of algebraic curves; Extended notions of tropical varieties which relate to Huber's theory of adic spaces analogously to the way that usual tropical varieties relate to Berkovich spaces; and Relations between nonarchimedean geometry and combinatorics, including deep and fascinating connections between matroid theory, tropical geometry, and Hodge theory.
Weil Conjectures, Perverse Sheaves and l-adic Fourier Transform
Author: Reinhardt Kiehl
Publisher: Springer Science & Business Media
ISBN: 3662045761
Category : Mathematics
Languages : en
Pages : 382
Book Description
The authors describe the important generalization of the original Weil conjectures, as given by P. Deligne in his fundamental paper "La conjecture de Weil II". The authors follow the important and beautiful methods of Laumon and Brylinski which lead to a simplification of Deligne's theory. Deligne's work is closely related to the sheaf theoretic theory of perverse sheaves. In this framework Deligne's results on global weights and his notion of purity of complexes obtain a satisfactory and final form. Therefore the authors include the complete theory of middle perverse sheaves. In this part, the l-adic Fourier transform is introduced as a technique providing natural and simple proofs. To round things off, there are three chapters with significant applications of these theories.
Publisher: Springer Science & Business Media
ISBN: 3662045761
Category : Mathematics
Languages : en
Pages : 382
Book Description
The authors describe the important generalization of the original Weil conjectures, as given by P. Deligne in his fundamental paper "La conjecture de Weil II". The authors follow the important and beautiful methods of Laumon and Brylinski which lead to a simplification of Deligne's theory. Deligne's work is closely related to the sheaf theoretic theory of perverse sheaves. In this framework Deligne's results on global weights and his notion of purity of complexes obtain a satisfactory and final form. Therefore the authors include the complete theory of middle perverse sheaves. In this part, the l-adic Fourier transform is introduced as a technique providing natural and simple proofs. To round things off, there are three chapters with significant applications of these theories.
Hopf Monoids and Generalized Permutahedra
Author: Marcelo Aguiar
Publisher: American Mathematical Society
ISBN: 1470467089
Category : Mathematics
Languages : en
Pages : 124
Book Description
View the abstract.
Publisher: American Mathematical Society
ISBN: 1470467089
Category : Mathematics
Languages : en
Pages : 124
Book Description
View the abstract.
Berkeley Lectures on P-adic Geometry
Author: Peter Scholze
Publisher: Princeton University Press
ISBN: 0691202095
Category : Mathematics
Languages : en
Pages : 260
Book Description
Berkeley Lectures on p-adic Geometry presents an important breakthrough in arithmetic geometry. In 2014, leading mathematician Peter Scholze delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory of p-adic geometry. Building on his discovery of perfectoid spaces, Scholze introduced the concept of “diamonds,” which are to perfectoid spaces what algebraic spaces are to schemes. The introduction of diamonds, along with the development of a mixed-characteristic shtuka, set the stage for a critical advance in the discipline. In this book, Peter Scholze and Jared Weinstein show that the moduli space of mixed-characteristic shtukas is a diamond, raising the possibility of using the cohomology of such spaces to attack the Langlands conjectures for a reductive group over a p-adic field. This book follows the informal style of the original Berkeley lectures, with one chapter per lecture. It explores p-adic and perfectoid spaces before laying out the newer theory of shtukas and their moduli spaces. Points of contact with other threads of the subject, including p-divisible groups, p-adic Hodge theory, and Rapoport-Zink spaces, are thoroughly explained. Berkeley Lectures on p-adic Geometry will be a useful resource for students and scholars working in arithmetic geometry and number theory.
Publisher: Princeton University Press
ISBN: 0691202095
Category : Mathematics
Languages : en
Pages : 260
Book Description
Berkeley Lectures on p-adic Geometry presents an important breakthrough in arithmetic geometry. In 2014, leading mathematician Peter Scholze delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory of p-adic geometry. Building on his discovery of perfectoid spaces, Scholze introduced the concept of “diamonds,” which are to perfectoid spaces what algebraic spaces are to schemes. The introduction of diamonds, along with the development of a mixed-characteristic shtuka, set the stage for a critical advance in the discipline. In this book, Peter Scholze and Jared Weinstein show that the moduli space of mixed-characteristic shtukas is a diamond, raising the possibility of using the cohomology of such spaces to attack the Langlands conjectures for a reductive group over a p-adic field. This book follows the informal style of the original Berkeley lectures, with one chapter per lecture. It explores p-adic and perfectoid spaces before laying out the newer theory of shtukas and their moduli spaces. Points of contact with other threads of the subject, including p-divisible groups, p-adic Hodge theory, and Rapoport-Zink spaces, are thoroughly explained. Berkeley Lectures on p-adic Geometry will be a useful resource for students and scholars working in arithmetic geometry and number theory.
Calabi-Yau Varieties and Mirror Symmetry
Author: Noriko Yui
Publisher: American Mathematical Soc.
ISBN: 9780821871430
Category : Mathematics
Languages : en
Pages : 388
Book Description
The idea of mirror symmetry originated in physics, but in recent years, the field of mirror symmetry has exploded onto the mathematical scene. It has inspired many new developments in algebraic and arithmetic geometry, toric geometry, the theory of Riemann surfaces, and infinite-dimensional Lie algebras among others. The developments in physics stimulated the interest of mathematicians in Calabi-Yau varieties. This led to the realization that the time is ripe for mathematicians, armed with many concrete examples and alerted by the mirror symmetry phenomenon, to focus on Calabi-Yau varieties and to test for these special varieties some of the great outstanding conjectures, e.g., the modularity conjecture for Calabi-Yau threefolds defined over the rationals, the Bloch-Beilinson conjectures, regulator maps of higher algebraic cycles, Picard-Fuchs differential equations, GKZ hypergeometric systems, and others. The articles in this volume report on current developments. The papers are divided roughly into two categories: geometric methods and arithmetic methods. One of the significant outcomes of the workshop is that we are finally beginning to understand the mirror symmetry phenomenon from the arithmetic point of view, namely, in terms of zeta-functions and L-series of mirror pairs of Calabi-Yau threefolds. The book is suitable for researchers interested in mirror symmetry and string theory.
Publisher: American Mathematical Soc.
ISBN: 9780821871430
Category : Mathematics
Languages : en
Pages : 388
Book Description
The idea of mirror symmetry originated in physics, but in recent years, the field of mirror symmetry has exploded onto the mathematical scene. It has inspired many new developments in algebraic and arithmetic geometry, toric geometry, the theory of Riemann surfaces, and infinite-dimensional Lie algebras among others. The developments in physics stimulated the interest of mathematicians in Calabi-Yau varieties. This led to the realization that the time is ripe for mathematicians, armed with many concrete examples and alerted by the mirror symmetry phenomenon, to focus on Calabi-Yau varieties and to test for these special varieties some of the great outstanding conjectures, e.g., the modularity conjecture for Calabi-Yau threefolds defined over the rationals, the Bloch-Beilinson conjectures, regulator maps of higher algebraic cycles, Picard-Fuchs differential equations, GKZ hypergeometric systems, and others. The articles in this volume report on current developments. The papers are divided roughly into two categories: geometric methods and arithmetic methods. One of the significant outcomes of the workshop is that we are finally beginning to understand the mirror symmetry phenomenon from the arithmetic point of view, namely, in terms of zeta-functions and L-series of mirror pairs of Calabi-Yau threefolds. The book is suitable for researchers interested in mirror symmetry and string theory.