On neutrosophic extended triplet groups (loops) and Abel-Grassmann’s groupoids (AG-groupoids)

On neutrosophic extended triplet groups (loops) and Abel-Grassmann’s groupoids (AG-groupoids) PDF Author: Xiaohong Zhang
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 11

Get Book Here

Book Description
From the perspective of semigroup theory, the characterizations of a neutrosophic extended triplet group (NETG) and AG-NET-loop (which is both an Abel-Grassmann groupoid and a neutrosophic extended triplet loop) are systematically analyzed and some important results are obtained. In particular, the following conclusions are strictly proved: (1) an algebraic system is neutrosophic extended triplet group if and only if it is a completely regular semigroup; (2) an algebraic system is weak commutative neutrosophic extended triplet group if and only if it is a Clifford semigroup; (3) for any element in an AG-NET-loop, its neutral element is unique and idempotent; (4) every AG-NET-loop is a completely regular and fully regular Abel-Grassmann groupoid (AG-groupoid), but the inverse is not true. Moreover, the constructing methods of NETGs (completely regular semigroups) are investigated, and the lists of some finite NETGs and AG-NET-loops are given.

On neutrosophic extended triplet groups (loops) and Abel-Grassmann’s groupoids (AG-groupoids)

On neutrosophic extended triplet groups (loops) and Abel-Grassmann’s groupoids (AG-groupoids) PDF Author: Xiaohong Zhang
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 11

Get Book Here

Book Description
From the perspective of semigroup theory, the characterizations of a neutrosophic extended triplet group (NETG) and AG-NET-loop (which is both an Abel-Grassmann groupoid and a neutrosophic extended triplet loop) are systematically analyzed and some important results are obtained. In particular, the following conclusions are strictly proved: (1) an algebraic system is neutrosophic extended triplet group if and only if it is a completely regular semigroup; (2) an algebraic system is weak commutative neutrosophic extended triplet group if and only if it is a Clifford semigroup; (3) for any element in an AG-NET-loop, its neutral element is unique and idempotent; (4) every AG-NET-loop is a completely regular and fully regular Abel-Grassmann groupoid (AG-groupoid), but the inverse is not true. Moreover, the constructing methods of NETGs (completely regular semigroups) are investigated, and the lists of some finite NETGs and AG-NET-loops are given.

Generalized Abel-Grassmann’s Neutrosophic Extended Triplet Loop

Generalized Abel-Grassmann’s Neutrosophic Extended Triplet Loop PDF Author: Xiaogang An
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 20

Get Book Here

Book Description
A group is an algebraic system that characterizes symmetry. As a generalization of the concept of a group, semigroups and various non-associative groupoids can be considered as algebraic abstractions of generalized symmetry.

The Decomposition Theorems of AG-Neutrosophic Extended Triplet Loops and Strong AG-(l, l)-Loops

The Decomposition Theorems of AG-Neutrosophic Extended Triplet Loops and Strong AG-(l, l)-Loops PDF Author: Xiaoying Wu
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 12

Get Book Here

Book Description
In this paper, some new properties of Abel Grassmann‘s Neutrosophic Extended Triplet Loop (AG-NET-Loop) were further studied.

Study of Two Kinds of Quasi AG-Neutrosophic Extended Triplet Loops

Study of Two Kinds of Quasi AG-Neutrosophic Extended Triplet Loops PDF Author: Xiaogang An
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 10

Get Book Here

Book Description
Abel-Grassmann’s groupoid and neutrosophic extended triplet loop are two important algebraic structures that describe two kinds of generalized symmetries. In this paper, we investigate quasi AG-neutrosophic extended triplet loop, which is a fusion structure of the two kinds of algebraic structures mentioned above.

Generalized Neutrosophic Extended Triplet Group

Generalized Neutrosophic Extended Triplet Group PDF Author: Yingcang Ma
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 16

Get Book Here

Book Description
Neutrosophic extended triplet group is a new algebra structure and is different from the classical group. In this paper, the notion of generalized neutrosophic extended triplet group is proposed and some properties are discussed.

Neutrosophic Sets and Systems, Vol. 33, 2020

Neutrosophic Sets and Systems, Vol. 33, 2020 PDF Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 353

Get Book Here

Book Description
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles in this issue: Extension of HyperGraph to n-SuperHyperGraph and to Plithogenic n-SuperHyperGraph, and Extension of HyperAlgebra to n-ary (Classical-/Neutro-/Anti-)HyperAlgebra, Neutrosophic Triplet Partial Bipolar Metric Spaces, The Neutrosophic Triplet of BI-algebras.

NeutroAlgebra of Neutrosophic Triplets

NeutroAlgebra of Neutrosophic Triplets PDF Author: Vasantha Kandasamy
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 15

Get Book Here

Book Description
In this paper, authors define the NeutroAlgebra of neutrosophic triplets groups. We prove the existence theorem for NeutroAlgebra of neutrosophic triplet groups. Several open problems are proposed. Further, the NeutroAlgebras of extended neutrosophic triplet groups have been obtained.

Regular CA-Groupoids and Cyclic Associative Neutrosophic Extended Triplet Groupoids (CA-NETGroupoids) with Green Relations

Regular CA-Groupoids and Cyclic Associative Neutrosophic Extended Triplet Groupoids (CA-NETGroupoids) with Green Relations PDF Author: Wangtao Yuan
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 19

Get Book Here

Book Description
Based on the theories of AG-groupoid, neutrosophic extended triplet (NET) and semigroup, the characteristics of regular cyclic associative groupoids (CA-groupoids) and cyclic associative neutrosophic extended triplet groupoids (CA-NET-groupoids) are further studied, and some important results are obtained.

Cyclic Associative Groupoids (CA-Groupoids) and Cyclic Associative Neutrosophic Extended Triplet Groupoids (CA-NET-Groupoids)

Cyclic Associative Groupoids (CA-Groupoids) and Cyclic Associative Neutrosophic Extended Triplet Groupoids (CA-NET-Groupoids) PDF Author: Xiaohong Zhang
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 11

Get Book Here

Book Description
Group is the basic algebraic structure describing symmetry based on associative law. In order to express more general symmetry (or variation symmetry), the concept of group is generalized in various ways, for examples, regular semigroups, generalized groups, neutrosophic extended triplet groups and AG-groupoids. In this paper, based on the law of cyclic association and the background of non-associative ring, left weakly Novikov algebra and CA-AG-groupoid, a new concept of cyclic associative groupoid (CA-groupoid) is firstly proposed, and some examples and basic properties are presented. Moreover, as a combination of neutrosophic extended triplet group (NETG) and CA-groupoid, the notion of cyclic associative neutrosophic extended triplet groupoid (CA-NET-groupoid) is introduced, some important results are obtained, particularly, a decomposition theorem of CA-NET-groupoid is proved.

Neutrosophic Sets and Systems, Book Series, Vol. 33, 2020. An International Book Series in Information Science and Engineering

Neutrosophic Sets and Systems, Book Series, Vol. 33, 2020. An International Book Series in Information Science and Engineering PDF Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 351

Get Book Here

Book Description
Contributors to current issue (listed in papers’ order): Atena Tahmasbpour Meikola, Arif Mehmood, Wadood Ullah, Said Broumi, Muhammad Imran Khan, Humera Qureshi, Muhammad Ibrar Abbas, Humaira Kalsoom, Fawad Nadeem, T. Chalapathi, L. Madhavi, R. Suresh, S. Palaniammal, Nivetha Martin, Florentin Smarandache, S. A. Edalatpanah, Rafif Alhabib, A. A. Salama, Memet Şahin, Abdullah Kargın, Murat Yücel, Dimacha Dwibrang Mwchahary, Bhimraj Basumatary, R. S. Alghamdi, N. O. Alshehri, Shigui Du, Rui Yong, Jun Ye, Vasantha Kandasamy, Ilanthenral Kandasamy, Muhammad Saeed, Muhammad Saqlain, Asad Mehmood, Khushbakht Naseer, Sonia Yaqoob, Sudipta Gayen, Sripati Jha, Manoranjan Kumar Singh, Ranjan Kumar, Huseyin Kamaci, Shawkat Alkhazaleh, Anas Al-Masarwah, Abd Ghafur Ahmad, Merve Sena Uz, Akbar Rezaei, Mohamed Grida, Rehab Mohamed, Abdelnaser H. Zaid.