Author: Victor Klee
Publisher: American Mathematical Soc.
ISBN: 1614442193
Category : Mathematics
Languages : en
Pages : 333
Book Description
Old and New Unsolved Problems in Plane Geometry and Number Theory
Old and New Unsolved Problems in Plane Geometry and Number Theory
Author: Victor Klee
Publisher: American Mathematical Soc.
ISBN: 1470454610
Category : Education
Languages : en
Pages : 333
Book Description
Victor Klee and Stan Wagon discuss some of the unsolved problems in number theory and geometry, many of which can be understood by readers with a very modest mathematical background. The presentation is organized around 24 central problems, many of which are accompanied by other, related problems. The authors place each problem in its historical and mathematical context, and the discussion is at the level of undergraduate mathematics. Each problem section is presented in two parts. The first gives an elementary overview discussing the history and both the solved and unsolved variants of the problem. The second part contains more details, including a few proofs of related results, a wider and deeper survey of what is known about the problem and its relatives, and a large collection of references. Both parts contain exercises, with solutions. The book is aimed at both teachers and students of mathematics who want to know more about famous unsolved problems.
Publisher: American Mathematical Soc.
ISBN: 1470454610
Category : Education
Languages : en
Pages : 333
Book Description
Victor Klee and Stan Wagon discuss some of the unsolved problems in number theory and geometry, many of which can be understood by readers with a very modest mathematical background. The presentation is organized around 24 central problems, many of which are accompanied by other, related problems. The authors place each problem in its historical and mathematical context, and the discussion is at the level of undergraduate mathematics. Each problem section is presented in two parts. The first gives an elementary overview discussing the history and both the solved and unsolved variants of the problem. The second part contains more details, including a few proofs of related results, a wider and deeper survey of what is known about the problem and its relatives, and a large collection of references. Both parts contain exercises, with solutions. The book is aimed at both teachers and students of mathematics who want to know more about famous unsolved problems.
Old and New Unsolved Problems in Plane Geometry and Number Theory
Author: Victor Klee
Publisher:
ISBN: 9780883853009
Category :
Languages : en
Pages : 340
Book Description
Publisher:
ISBN: 9780883853009
Category :
Languages : en
Pages : 340
Book Description
Old and New Unsolved Problems in Plane Geometry and Number Theory
Author: Victor Klee
Publisher:
ISBN: 9780883853009
Category :
Languages : en
Pages : 340
Book Description
Publisher:
ISBN: 9780883853009
Category :
Languages : en
Pages : 340
Book Description
Unsolved Problems in Number Theory
Author: Richard Guy
Publisher: Springer Science & Business Media
ISBN: 1489935851
Category : Mathematics
Languages : en
Pages : 303
Book Description
Second edition sold 2241 copies in N.A. and 1600 ROW. New edition contains 50 percent new material.
Publisher: Springer Science & Business Media
ISBN: 1489935851
Category : Mathematics
Languages : en
Pages : 303
Book Description
Second edition sold 2241 copies in N.A. and 1600 ROW. New edition contains 50 percent new material.
Number Theory and Applications
Author: S.D. Adhikari
Publisher: Springer
ISBN: 9386279460
Category : Mathematics
Languages : en
Pages : 285
Book Description
This collection of articles contains the proceedings of the two international conferences (on Number Theory and Cryptography) held at the Harish - Chandra Research Institute. In recent years the interest in number theory has increased due to its applications in areas like error-correcting codes and cryptography. These proceedings contain papers in various areas of number theory, such as combinatorial, algebraic, analytic and transcendental aspects, arithmetic algebraic geometry, as well as graph theory and cryptography. While some papers do contain new results, several of the papers are expository articles that mention open questions, which will be useful to young researchers.
Publisher: Springer
ISBN: 9386279460
Category : Mathematics
Languages : en
Pages : 285
Book Description
This collection of articles contains the proceedings of the two international conferences (on Number Theory and Cryptography) held at the Harish - Chandra Research Institute. In recent years the interest in number theory has increased due to its applications in areas like error-correcting codes and cryptography. These proceedings contain papers in various areas of number theory, such as combinatorial, algebraic, analytic and transcendental aspects, arithmetic algebraic geometry, as well as graph theory and cryptography. While some papers do contain new results, several of the papers are expository articles that mention open questions, which will be useful to young researchers.
CRC Concise Encyclopedia of Mathematics
Author: Eric W. Weisstein
Publisher: CRC Press
ISBN: 1420035223
Category : Mathematics
Languages : en
Pages : 3253
Book Description
Upon publication, the first edition of the CRC Concise Encyclopedia of Mathematics received overwhelming accolades for its unparalleled scope, readability, and utility. It soon took its place among the top selling books in the history of Chapman & Hall/CRC, and its popularity continues unabated. Yet also unabated has been the d
Publisher: CRC Press
ISBN: 1420035223
Category : Mathematics
Languages : en
Pages : 3253
Book Description
Upon publication, the first edition of the CRC Concise Encyclopedia of Mathematics received overwhelming accolades for its unparalleled scope, readability, and utility. It soon took its place among the top selling books in the history of Chapman & Hall/CRC, and its popularity continues unabated. Yet also unabated has been the d
Problem-Solving and Selected Topics in Euclidean Geometry
Author: Sotirios E. Louridas
Publisher: Springer Science & Business Media
ISBN: 1461472733
Category : Mathematics
Languages : en
Pages : 238
Book Description
"Problem-Solving and Selected Topics in Euclidean Geometry: in the Spirit of the Mathematical Olympiads" contains theorems which are of particular value for the solution of geometrical problems. Emphasis is given in the discussion of a variety of methods, which play a significant role for the solution of problems in Euclidean Geometry. Before the complete solution of every problem, a key idea is presented so that the reader will be able to provide the solution. Applications of the basic geometrical methods which include analysis, synthesis, construction and proof are given. Selected problems which have been given in mathematical olympiads or proposed in short lists in IMO's are discussed. In addition, a number of problems proposed by leading mathematicians in the subject are included here. The book also contains new problems with their solutions. The scope of the publication of the present book is to teach mathematical thinking through Geometry and to provide inspiration for both students and teachers to formulate "positive" conjectures and provide solutions.
Publisher: Springer Science & Business Media
ISBN: 1461472733
Category : Mathematics
Languages : en
Pages : 238
Book Description
"Problem-Solving and Selected Topics in Euclidean Geometry: in the Spirit of the Mathematical Olympiads" contains theorems which are of particular value for the solution of geometrical problems. Emphasis is given in the discussion of a variety of methods, which play a significant role for the solution of problems in Euclidean Geometry. Before the complete solution of every problem, a key idea is presented so that the reader will be able to provide the solution. Applications of the basic geometrical methods which include analysis, synthesis, construction and proof are given. Selected problems which have been given in mathematical olympiads or proposed in short lists in IMO's are discussed. In addition, a number of problems proposed by leading mathematicians in the subject are included here. The book also contains new problems with their solutions. The scope of the publication of the present book is to teach mathematical thinking through Geometry and to provide inspiration for both students and teachers to formulate "positive" conjectures and provide solutions.
Towards a Theory of Geometric Graphs
Author: János Pach
Publisher: American Mathematical Soc.
ISBN: 0821834843
Category : Mathematics
Languages : en
Pages : 300
Book Description
This volume contains a collection of papers on graph theory, with the common theme that all the graph theoretical problems addressed are approached from a geometrical, rather than an abstract point of view. This is no accident; the editor selected these papers not as a comprehensive literature revie
Publisher: American Mathematical Soc.
ISBN: 0821834843
Category : Mathematics
Languages : en
Pages : 300
Book Description
This volume contains a collection of papers on graph theory, with the common theme that all the graph theoretical problems addressed are approached from a geometrical, rather than an abstract point of view. This is no accident; the editor selected these papers not as a comprehensive literature revie
Bodies of Constant Width
Author: Horst Martini
Publisher: Springer
ISBN: 3030038688
Category : Mathematics
Languages : en
Pages : 486
Book Description
This is the first comprehensive monograph to thoroughly investigate constant width bodies, which is a classic area of interest within convex geometry. It examines bodies of constant width from several points of view, and, in doing so, shows surprising connections between various areas of mathematics. Concise explanations and detailed proofs demonstrate the many interesting properties and applications of these bodies. Numerous instructive diagrams are provided throughout to illustrate these concepts. An introduction to convexity theory is first provided, and the basic properties of constant width bodies are then presented. The book then delves into a number of related topics, which include Constant width bodies in convexity (sections and projections, complete and reduced sets, mixed volumes, and further partial fields) Sets of constant width in non-Euclidean geometries (in real Banach spaces, and in hyperbolic, spherical, and further non-Euclidean spaces) The concept of constant width in analysis (using Fourier series, spherical integration, and other related methods) Sets of constant width in differential geometry (using systems of lines and discussing notions like curvature, evolutes, etc.) Bodies of constant width in topology (hyperspaces, transnormal manifolds, fiber bundles, and related topics) The notion of constant width in discrete geometry (referring to geometric inequalities, packings and coverings, etc.) Technical applications, such as film projectors, the square-hole drill, and rotary engines Bodies of Constant Width: An Introduction to Convex Geometry with Applications will be a valuable resource for graduate and advanced undergraduate students studying convex geometry and related fields. Additionally, it will appeal to any mathematicians with a general interest in geometry.
Publisher: Springer
ISBN: 3030038688
Category : Mathematics
Languages : en
Pages : 486
Book Description
This is the first comprehensive monograph to thoroughly investigate constant width bodies, which is a classic area of interest within convex geometry. It examines bodies of constant width from several points of view, and, in doing so, shows surprising connections between various areas of mathematics. Concise explanations and detailed proofs demonstrate the many interesting properties and applications of these bodies. Numerous instructive diagrams are provided throughout to illustrate these concepts. An introduction to convexity theory is first provided, and the basic properties of constant width bodies are then presented. The book then delves into a number of related topics, which include Constant width bodies in convexity (sections and projections, complete and reduced sets, mixed volumes, and further partial fields) Sets of constant width in non-Euclidean geometries (in real Banach spaces, and in hyperbolic, spherical, and further non-Euclidean spaces) The concept of constant width in analysis (using Fourier series, spherical integration, and other related methods) Sets of constant width in differential geometry (using systems of lines and discussing notions like curvature, evolutes, etc.) Bodies of constant width in topology (hyperspaces, transnormal manifolds, fiber bundles, and related topics) The notion of constant width in discrete geometry (referring to geometric inequalities, packings and coverings, etc.) Technical applications, such as film projectors, the square-hole drill, and rotary engines Bodies of Constant Width: An Introduction to Convex Geometry with Applications will be a valuable resource for graduate and advanced undergraduate students studying convex geometry and related fields. Additionally, it will appeal to any mathematicians with a general interest in geometry.