Author: Kei Ieki
Publisher: Springer
ISBN: 4431558373
Category : Science
Languages : en
Pages : 205
Book Description
In this thesis the author contributes to the analysis of neutrino beam data collected between 2010 and 2013 to identify νμ→νe events at the Super-Kamiokande detector. In particular, the author improves the pion–nucleus interaction uncertainty, which is one of the dominant systematic error sources in T2K neutrino oscillation measurement. In the thesis, the measurement of νμ→νe oscillation in the T2K (Tokai to Kamioka) experiment is presented and a new constraint on δCP is obtained. This measurement and the analysis establish, at greater than 5σ significance, the observation of νμ→νe oscillation for the first time in the world. Combining the T2K νμ→νe oscillation measurement with the latest findings on oscillation parameters including the world average value of θ13 from reactor experiments, the constraint on the value of δCP at the 90% confidence level is obtained. This constraint on δCP is an important step towards the discovery of CP violation in the lepton sector.
Observation of ν_μ→ν_e Oscillation in the T2K Experiment
Author: Kei Ieki
Publisher: Springer
ISBN: 4431558373
Category : Science
Languages : en
Pages : 205
Book Description
In this thesis the author contributes to the analysis of neutrino beam data collected between 2010 and 2013 to identify νμ→νe events at the Super-Kamiokande detector. In particular, the author improves the pion–nucleus interaction uncertainty, which is one of the dominant systematic error sources in T2K neutrino oscillation measurement. In the thesis, the measurement of νμ→νe oscillation in the T2K (Tokai to Kamioka) experiment is presented and a new constraint on δCP is obtained. This measurement and the analysis establish, at greater than 5σ significance, the observation of νμ→νe oscillation for the first time in the world. Combining the T2K νμ→νe oscillation measurement with the latest findings on oscillation parameters including the world average value of θ13 from reactor experiments, the constraint on the value of δCP at the 90% confidence level is obtained. This constraint on δCP is an important step towards the discovery of CP violation in the lepton sector.
Publisher: Springer
ISBN: 4431558373
Category : Science
Languages : en
Pages : 205
Book Description
In this thesis the author contributes to the analysis of neutrino beam data collected between 2010 and 2013 to identify νμ→νe events at the Super-Kamiokande detector. In particular, the author improves the pion–nucleus interaction uncertainty, which is one of the dominant systematic error sources in T2K neutrino oscillation measurement. In the thesis, the measurement of νμ→νe oscillation in the T2K (Tokai to Kamioka) experiment is presented and a new constraint on δCP is obtained. This measurement and the analysis establish, at greater than 5σ significance, the observation of νμ→νe oscillation for the first time in the world. Combining the T2K νμ→νe oscillation measurement with the latest findings on oscillation parameters including the world average value of θ13 from reactor experiments, the constraint on the value of δCP at the 90% confidence level is obtained. This constraint on δCP is an important step towards the discovery of CP violation in the lepton sector.
The B−L Phase Transition
Author: Kai Schmitz
Publisher: Springer Science & Business Media
ISBN: 331900963X
Category : Science
Languages : en
Pages : 225
Book Description
Several of the very foundations of the cosmological standard model — the baryon asymmetry of the universe, dark matter, and the origin of the hot big bang itself — still call for an explanation from the perspective of fundamental physics. This work advocates one intriguing possibility for a consistent cosmology that fills in the theoretical gaps while being fully in accordance with the observational data. At very high energies, the universe might have been in a false vacuum state that preserved B-L, the difference between the baryon number B and the lepton number L as a local symmetry. In this state, the universe experienced a stage of hybrid inflation that only ended when the false vacuum became unstable and decayed, in the course of a waterfall transition, into a phase with spontaneously broken B-L symmetry. This B-L Phase Transition was accompanied by tachyonic preheating that transferred almost the entire energy of the false vacuum into a gas of B-L Higgs bosons, which in turn decayed into heavy Majorana neutrinos. Eventually, these neutrinos decayed into massless radiation, thereby producing the entropy of the hot big bang, generating the baryon asymmetry of the universe via the leptogenesis mechanism and setting the stage for the production of dark matter. Next to a variety of conceptual novelties and phenomenological predictions, the main achievement of the thesis is hence the fascinating notion that the leading role in the first act of our universe might have actually been played by neutrinos.
Publisher: Springer Science & Business Media
ISBN: 331900963X
Category : Science
Languages : en
Pages : 225
Book Description
Several of the very foundations of the cosmological standard model — the baryon asymmetry of the universe, dark matter, and the origin of the hot big bang itself — still call for an explanation from the perspective of fundamental physics. This work advocates one intriguing possibility for a consistent cosmology that fills in the theoretical gaps while being fully in accordance with the observational data. At very high energies, the universe might have been in a false vacuum state that preserved B-L, the difference between the baryon number B and the lepton number L as a local symmetry. In this state, the universe experienced a stage of hybrid inflation that only ended when the false vacuum became unstable and decayed, in the course of a waterfall transition, into a phase with spontaneously broken B-L symmetry. This B-L Phase Transition was accompanied by tachyonic preheating that transferred almost the entire energy of the false vacuum into a gas of B-L Higgs bosons, which in turn decayed into heavy Majorana neutrinos. Eventually, these neutrinos decayed into massless radiation, thereby producing the entropy of the hot big bang, generating the baryon asymmetry of the universe via the leptogenesis mechanism and setting the stage for the production of dark matter. Next to a variety of conceptual novelties and phenomenological predictions, the main achievement of the thesis is hence the fascinating notion that the leading role in the first act of our universe might have actually been played by neutrinos.
Double Chooz and Reactor Neutrino Oscillation
Author: Thiago Junqueira de Castro Bezerra
Publisher: Springer
ISBN: 4431553754
Category : Science
Languages : en
Pages : 202
Book Description
This book is based on the author’s work at the Double Chooz Experiment, from 2010 to 2013, the goal of which was to search for electronic anti-neutrino disappearance close to nuclear power plant facilities as a result of neutrino oscillation. Starting with a brief review of neutrino oscillation and the most important past experimental findings in this field, the author subsequently provides a full and detailed description of a neutrino detector, from simulation aspects to detection principles, as well as the data analysis procedure used to extract the oscillation parameters. The main results in this book are 1) an improvement on the mixing angle, θ13, uncertainty by combining two data-sets from neutrino event selection: neutron capture on gadolinium and on hydrogen; and 2) the first measurement of the effective squared mass difference by combining the current reactor neutrino experimental data from Daya Bay, Double Chooz and RENO and taking advantage of their different reactor-to-detector distances. The author explains how these methods of combining data can be used to estimate these two values. Each method results in the best possible sensitivity for the oscillation parameters with regard to reactor neutrinos. They can be used as a standard method on the latest data releases from the current experiments.
Publisher: Springer
ISBN: 4431553754
Category : Science
Languages : en
Pages : 202
Book Description
This book is based on the author’s work at the Double Chooz Experiment, from 2010 to 2013, the goal of which was to search for electronic anti-neutrino disappearance close to nuclear power plant facilities as a result of neutrino oscillation. Starting with a brief review of neutrino oscillation and the most important past experimental findings in this field, the author subsequently provides a full and detailed description of a neutrino detector, from simulation aspects to detection principles, as well as the data analysis procedure used to extract the oscillation parameters. The main results in this book are 1) an improvement on the mixing angle, θ13, uncertainty by combining two data-sets from neutrino event selection: neutron capture on gadolinium and on hydrogen; and 2) the first measurement of the effective squared mass difference by combining the current reactor neutrino experimental data from Daya Bay, Double Chooz and RENO and taking advantage of their different reactor-to-detector distances. The author explains how these methods of combining data can be used to estimate these two values. Each method results in the best possible sensitivity for the oscillation parameters with regard to reactor neutrinos. They can be used as a standard method on the latest data releases from the current experiments.
Introduction to the Physics of Massive and Mixed Neutrinos
Author: Samoil Bilenky
Publisher: Springer
ISBN: 3319748025
Category : Science
Languages : en
Pages : 283
Book Description
Small neutrino masses are the first signs of new physics beyond the Standard Model of particle physics. Since the first edition of this textbook appeared in 2010, the Nobel Prize has been awarded "for the discovery of neutrino oscillations, which shows that neutrinos have mass". The measurement of the small neutrino mixing angle $\theta_{13}$ in 2012, launched the precision stage of the investigation of neutrino oscillations. This measurement now allows such fundamental problems as the three-neutrino mass spectrum - is it normal or inverted? – and the $CP$ violation in the lepton sector to be tackled. In order to understand the origin of small neutrino masses, it remains crucial to reveal the nature of neutrinos with definite masses: are they Dirac neutrinos possessing a conserved lepton number, which distinguishes neutrinos and antineutrinos, or are they Majorana neutrinos with identical neutrinos and antineutrinos? Experiments searching for the neutrinoless double beta decay are presently under way to answer this fundamental question. The second edition of this book comprehensively discusses all these important recent developments. Based on numerous lectures given by the author, a pioneer of modern neutrino physics (recipient of the Bruno Pontecorvo Prize 2002), at different institutions and schools, it offers a gentle yet detailed introduction to the physics of massive and mixed neutrinos that prepares graduate students and young researchers entering the field for the exciting years ahead in neutrino physics.
Publisher: Springer
ISBN: 3319748025
Category : Science
Languages : en
Pages : 283
Book Description
Small neutrino masses are the first signs of new physics beyond the Standard Model of particle physics. Since the first edition of this textbook appeared in 2010, the Nobel Prize has been awarded "for the discovery of neutrino oscillations, which shows that neutrinos have mass". The measurement of the small neutrino mixing angle $\theta_{13}$ in 2012, launched the precision stage of the investigation of neutrino oscillations. This measurement now allows such fundamental problems as the three-neutrino mass spectrum - is it normal or inverted? – and the $CP$ violation in the lepton sector to be tackled. In order to understand the origin of small neutrino masses, it remains crucial to reveal the nature of neutrinos with definite masses: are they Dirac neutrinos possessing a conserved lepton number, which distinguishes neutrinos and antineutrinos, or are they Majorana neutrinos with identical neutrinos and antineutrinos? Experiments searching for the neutrinoless double beta decay are presently under way to answer this fundamental question. The second edition of this book comprehensively discusses all these important recent developments. Based on numerous lectures given by the author, a pioneer of modern neutrino physics (recipient of the Bruno Pontecorvo Prize 2002), at different institutions and schools, it offers a gentle yet detailed introduction to the physics of massive and mixed neutrinos that prepares graduate students and young researchers entering the field for the exciting years ahead in neutrino physics.
Exploring Electron–Neutrino–Argon Interactions
Author: Krishan V. J. Mistry
Publisher: Springer Nature
ISBN: 3031195728
Category : Science
Languages : en
Pages : 223
Book Description
This thesis explores the electron-neutrino and antineutrino cross section on argon using the MicroBooNE liquid argon time projection chamber detector. With only a handful of electron neutrino cross section measurements in the hundred MeV to GeV range to date and only one of them on argon as the target nucleus: the result from the ArgoNeuT experiment, there is a need for new, large statistics, electron-neutrino cross section measurements. The precise knowledge of the electron neutrino cross section is fundamental for tests of lepton universality, making meaningful interpretations of neutrino oscillations and beyond the Standard Model search experiments involving electron neutrinos. Moreover, the appearance of electron neutrinos in a beam of predominantly muon neutrinos is the key signature in searches for sterile neutrinos in short-baseline experiments and measurements of Charge-Parity violation in long-baseline oscillation experiments. The measurements in this thesis utilize the NuMI neutrino beamline which is highly off-axis to the MicroBooNE detector but provides a rich source of electron-neutrinos. Critical to the measurement of the cross section is a detailed understanding of the flux of neutrinos at MicroBooNE and the uncertainties associated with it. The neutrino flux prediction tools used for the on-axis NuMI experiments are described and studied in detail for their implementation in the case of MicroBooNE. These tools will form the foundation for many future measurements using the NuMI beam at MicroBooNE. With the use of argon as a target for studying neutrino interactions, the large size of the nucleus introduces nuclear effects which impact the kinematics and multiplicities of the particles produced in the initial interaction. Such effects are complicated to model and are currently an active area of research with various models and neutrino generators available. The measurements in this thesis compare the electron-neutrino argon cross section to several neutrino generators with differing physics models. These comparisons provide important information in the modelling of neutrino interactions with nuclei such as argon. The target audience for this thesis is aimed at particle physics graduate students, particularly in the field of neutrino physics working with noble element time-projection chambers.
Publisher: Springer Nature
ISBN: 3031195728
Category : Science
Languages : en
Pages : 223
Book Description
This thesis explores the electron-neutrino and antineutrino cross section on argon using the MicroBooNE liquid argon time projection chamber detector. With only a handful of electron neutrino cross section measurements in the hundred MeV to GeV range to date and only one of them on argon as the target nucleus: the result from the ArgoNeuT experiment, there is a need for new, large statistics, electron-neutrino cross section measurements. The precise knowledge of the electron neutrino cross section is fundamental for tests of lepton universality, making meaningful interpretations of neutrino oscillations and beyond the Standard Model search experiments involving electron neutrinos. Moreover, the appearance of electron neutrinos in a beam of predominantly muon neutrinos is the key signature in searches for sterile neutrinos in short-baseline experiments and measurements of Charge-Parity violation in long-baseline oscillation experiments. The measurements in this thesis utilize the NuMI neutrino beamline which is highly off-axis to the MicroBooNE detector but provides a rich source of electron-neutrinos. Critical to the measurement of the cross section is a detailed understanding of the flux of neutrinos at MicroBooNE and the uncertainties associated with it. The neutrino flux prediction tools used for the on-axis NuMI experiments are described and studied in detail for their implementation in the case of MicroBooNE. These tools will form the foundation for many future measurements using the NuMI beam at MicroBooNE. With the use of argon as a target for studying neutrino interactions, the large size of the nucleus introduces nuclear effects which impact the kinematics and multiplicities of the particles produced in the initial interaction. Such effects are complicated to model and are currently an active area of research with various models and neutrino generators available. The measurements in this thesis compare the electron-neutrino argon cross section to several neutrino generators with differing physics models. These comparisons provide important information in the modelling of neutrino interactions with nuclei such as argon. The target audience for this thesis is aimed at particle physics graduate students, particularly in the field of neutrino physics working with noble element time-projection chambers.
Introduction to Neutrino and Particle Physics
Author: Giulia Ricciardi
Publisher: Springer Nature
ISBN: 3031650964
Category :
Languages : en
Pages : 421
Book Description
Publisher: Springer Nature
ISBN: 3031650964
Category :
Languages : en
Pages : 421
Book Description
State Of The Art Of Neutrino Physics, The: A Tutorial For Graduate Students And Young Researchers
Author: Antonio Ereditato
Publisher: World Scientific
ISBN: 9813226102
Category : Science
Languages : en
Pages : 580
Book Description
The neutrino is the most fascinating elementary particle due to its elusive nature and outstanding properties that have attracted the interest of generations of physicists since 1930, when it was first postulated by Wolfgang Pauli as a 'desperate remedy' to explain the apparent energy violation in the beta decay. Many fundamental discoveries in particle physics had the neutrino involved in one way or another. To date, neutrino physics is still one of the hottest topics of modern particle physics. Key experiments and significant theoretical developments have contributed in building up what we can call now the Standard Model of Neutrino Physics.The aim of the book is to provide graduate students and young researchers a comprehensive tutorial in modern neutrino physics, specially tailored with emphasis on the educational aspects. It provides an overview of the basics and of recent achievements in the field, from both experimental and theoretical points of view.
Publisher: World Scientific
ISBN: 9813226102
Category : Science
Languages : en
Pages : 580
Book Description
The neutrino is the most fascinating elementary particle due to its elusive nature and outstanding properties that have attracted the interest of generations of physicists since 1930, when it was first postulated by Wolfgang Pauli as a 'desperate remedy' to explain the apparent energy violation in the beta decay. Many fundamental discoveries in particle physics had the neutrino involved in one way or another. To date, neutrino physics is still one of the hottest topics of modern particle physics. Key experiments and significant theoretical developments have contributed in building up what we can call now the Standard Model of Neutrino Physics.The aim of the book is to provide graduate students and young researchers a comprehensive tutorial in modern neutrino physics, specially tailored with emphasis on the educational aspects. It provides an overview of the basics and of recent achievements in the field, from both experimental and theoretical points of view.
Fundamentals of Neutrino Physics and Astrophysics
Author: Carlo Giunti
Publisher: Oxford University Press
ISBN: 0198508719
Category : Science
Languages : en
Pages : 727
Book Description
Our Universe is made of a dozen fundamental building blocks. Among these, neutrinos are the most mysterious - but they are the second most abundant particles in the Universe. This book provides detailed discussions of how to describe neutrinos, their basic properties, and the roles they play in nature.
Publisher: Oxford University Press
ISBN: 0198508719
Category : Science
Languages : en
Pages : 727
Book Description
Our Universe is made of a dozen fundamental building blocks. Among these, neutrinos are the most mysterious - but they are the second most abundant particles in the Universe. This book provides detailed discussions of how to describe neutrinos, their basic properties, and the roles they play in nature.
First Measurement of Neutrino and Antineutrino Oscillation at T2K
Author: Kirsty Elizabeth Duffy
Publisher: Springer
ISBN: 3319650408
Category : Science
Languages : en
Pages : 180
Book Description
This thesis reports the measurement of muon neutrino and antineutrino disappearance and electron neutrino and antineutrino appearance in a muon neutrino and antineutrino beam using the T2K experiment. It describes a result in neutrino physics that is a pioneering indication of charge-parity (CP) violation in neutrino oscillation; the first to be obtained from a single experiment. Neutrinos are some of the most abundant—but elusive—particles in the universe, and may provide a promising place to look for a potential solution to the puzzle of matter/antimatter imbalance in the observable universe. It has been firmly established that neutrinos can change flavour (or ‘oscillate’), as recognised by the 2015 Nobel Prize. The theory of neutrino oscillation allows for neutrinos and antineutrinos to oscillate differently (CP violation), and may provide insights into why our universe is matter-dominated. Bayesian statistical methods, including the Markov Chain Monte Carlo fitting technique, are used to simultaneously optimise several hundred systematic parameters describing detector, beam, and neutrino interaction uncertainties as well as the six oscillation parameters.
Publisher: Springer
ISBN: 3319650408
Category : Science
Languages : en
Pages : 180
Book Description
This thesis reports the measurement of muon neutrino and antineutrino disappearance and electron neutrino and antineutrino appearance in a muon neutrino and antineutrino beam using the T2K experiment. It describes a result in neutrino physics that is a pioneering indication of charge-parity (CP) violation in neutrino oscillation; the first to be obtained from a single experiment. Neutrinos are some of the most abundant—but elusive—particles in the universe, and may provide a promising place to look for a potential solution to the puzzle of matter/antimatter imbalance in the observable universe. It has been firmly established that neutrinos can change flavour (or ‘oscillate’), as recognised by the 2015 Nobel Prize. The theory of neutrino oscillation allows for neutrinos and antineutrinos to oscillate differently (CP violation), and may provide insights into why our universe is matter-dominated. Bayesian statistical methods, including the Markov Chain Monte Carlo fitting technique, are used to simultaneously optimise several hundred systematic parameters describing detector, beam, and neutrino interaction uncertainties as well as the six oscillation parameters.
Signatures of the Artist
Author: Steven E. Vigdor
Publisher: Oxford University Press
ISBN: 0192546775
Category : Science
Languages : en
Pages : 313
Book Description
How does the scientific enterprise really work to illuminate the origins of life and the universe itself? The quest to understand our universe, how it may have originated and evolved, and especially the conditions that allow it to support the existence of life forms, has been a central theme in religion for millennia and in science for centuries. In the past half-century, in particular, enormous progress in particle and nuclear physics and cosmology has clarified the essential role of imperfections - deviations from perfect symmetry or homogeneity or predictability - in establishing conditions that allow for structure in the universe that can support the development of life. Many of these deviations are tiny and seem mysteriously fine-tuned to allow for life. The goal of this book is to review the recent and ongoing scientific research exploring these imperfections, in a broad-ranging, non-mathematical approach with an emphasis on the intricate tapestry of elegant experiments that bear on the conditions for habitability in our universe. This book makes clear what we know and how we know it, as distinct from what we speculate and how we might test it. At the same time, it attempts to convey a sense of wonderment at the tuning of these imperfections and of the rapid rate at which the boundary between knowledge and speculation is currently shifting.
Publisher: Oxford University Press
ISBN: 0192546775
Category : Science
Languages : en
Pages : 313
Book Description
How does the scientific enterprise really work to illuminate the origins of life and the universe itself? The quest to understand our universe, how it may have originated and evolved, and especially the conditions that allow it to support the existence of life forms, has been a central theme in religion for millennia and in science for centuries. In the past half-century, in particular, enormous progress in particle and nuclear physics and cosmology has clarified the essential role of imperfections - deviations from perfect symmetry or homogeneity or predictability - in establishing conditions that allow for structure in the universe that can support the development of life. Many of these deviations are tiny and seem mysteriously fine-tuned to allow for life. The goal of this book is to review the recent and ongoing scientific research exploring these imperfections, in a broad-ranging, non-mathematical approach with an emphasis on the intricate tapestry of elegant experiments that bear on the conditions for habitability in our universe. This book makes clear what we know and how we know it, as distinct from what we speculate and how we might test it. At the same time, it attempts to convey a sense of wonderment at the tuning of these imperfections and of the rapid rate at which the boundary between knowledge and speculation is currently shifting.