Numerical Solutions of Convection-diffusion Equations Using Specially Adapted Meshes

Numerical Solutions of Convection-diffusion Equations Using Specially Adapted Meshes PDF Author: Michael R. Treacy
Publisher:
ISBN:
Category :
Languages : en
Pages : 312

Get Book Here

Book Description

Numerical Solutions of Convection-diffusion Equations Using Specially Adapted Meshes

Numerical Solutions of Convection-diffusion Equations Using Specially Adapted Meshes PDF Author: Michael R. Treacy
Publisher:
ISBN:
Category :
Languages : en
Pages : 312

Get Book Here

Book Description


Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems

Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems PDF Author: Torsten Linß
Publisher: Springer
ISBN: 3642051340
Category : Mathematics
Languages : en
Pages : 331

Get Book Here

Book Description
This is a book on numerical methods for singular perturbation problems – in part- ular, stationary reaction-convection-diffusion problems exhibiting layer behaviour. More precisely, it is devoted to the construction and analysis of layer-adapted meshes underlying these numerical methods. Numerical methods for singularly perturbed differential equations have been studied since the early 1970s and the research frontier has been constantly - panding since. A comprehensive exposition of the state of the art in the analysis of numerical methods for singular perturbation problems is [141] which was p- lished in 2008. As that monograph covers a big variety of numerical methods, it only contains a rather short introduction to layer-adapted meshes, while the present book is exclusively dedicated to that subject. An early important contribution towards the optimisation of numerical methods by means of special meshes was made by N.S. Bakhvalov [18] in 1969. His paper spawned a lively discussion in the literature with a number of further meshes - ing proposed and applied to various singular perturbation problems. However, in the mid 1980s, this development stalled, but was enlivened again by G.I. Shishkin’s proposal of piecewise-equidistant meshes in the early 1990s [121,150]. Because of their very simple structure, they are often much easier to analyse than other meshes, although they give numerical approximations that are inferior to solutions on c- peting meshes. Shishkin meshes for numerous problems and numerical methods have been studied since and they are still very much in vogue.

Convection-diffusion Problems

Convection-diffusion Problems PDF Author: Martin Stynes
Publisher:
ISBN: 9781470450212
Category : MATHEMATICS
Languages : en
Pages :

Get Book Here

Book Description
Many physical problems involve diffusive and convective (transport) processes. When diffusion dominates convection, standard numerical methods work satisfactorily. But when convection dominates diffusion, the standard methods become unstable, and special techniques are needed to compute accurate numerical approximations of the unknown solution. This convection-dominated regime is the focus of the book. After discussing at length the nature of solutions to convection-dominated convection-diffusion problems, the authors motivate and design numerical methods that are particularly suited to this c.

Convection-Diffusion Problems: An Introduction to Their Analysis and Numerical Solution

Convection-Diffusion Problems: An Introduction to Their Analysis and Numerical Solution PDF Author: Martin Stynes
Publisher: American Mathematical Soc.
ISBN: 1470448688
Category : Differential equations
Languages : en
Pages : 156

Get Book Here

Book Description
Many physical problems involve diffusive and convective (transport) processes. When diffusion dominates convection, standard numerical methods work satisfactorily. But when convection dominates diffusion, the standard methods become unstable, and special techniques are needed to compute accurate numerical approximations of the unknown solution. This convection-dominated regime is the focus of the book. After discussing at length the nature of solutions to convection-dominated convection-diffusion problems, the authors motivate and design numerical methods that are particularly suited to this class of problems. At first they examine finite-difference methods for two-point boundary value problems, as their analysis requires little theoretical background. Upwinding, artificial diffusion, uniformly convergent methods, and Shishkin meshes are some of the topics presented. Throughout, the authors are concerned with the accuracy of solutions when the diffusion coefficient is close to zero. Later in the book they concentrate on finite element methods for problems posed in one and two dimensions. This lucid yet thorough account of convection-dominated convection-diffusion problems and how to solve them numerically is meant for beginning graduate students, and it includes a large number of exercises. An up-to-date bibliography provides the reader with further reading.

Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems

Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems PDF Author: Torsten Lin y
Publisher:
ISBN: 9783642051531
Category : Finite volume method
Languages : en
Pages : 340

Get Book Here

Book Description
This book on numerical methods for singular perturbation problems - in particular, stationary reaction-convection-diffusion problems exhibiting layer behaviour is devoted to the construction and analysis of layer-adapted meshes underlying these numerical methods. A classification and a survey of layer-adapted meshes for reaction-convection-diffusion problems are included. This structured and comprehensive account of current ideas in the numerical analysis for various methods on layer-adapted meshes is addressed to researchers in finite element theory and perturbation problems. Finite differences, finite elements and finite volumes are all covered.

Layer-adapted Meshes for Convection-diffusion Problems

Layer-adapted Meshes for Convection-diffusion Problems PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This is a book on numerical methods for singular perturbation problems - in particular stationary convection-dominated convection-diffusion problems. More precisely it is devoted to the construction and analysis of layer-adapted meshes underlying these numerical methods. An early important contribution towards the optimization of numerical methods by means of special meshes was made by N.S. Bakhvalov in 1969. His paper spawned a lively discussion in the literature with a number of further meshes being proposed and applied to various singular perturbation problems. However, in the mid 1980s this development stalled, but was enlivend again by G.I. Shishkin's proposal of piecewise- equidistant meshes in the early 1990s. Because of their very simple structure they are often much easier to analyse than other meshes, although they give numerical approximations that are inferior to solutions on competing meshes. Shishkin meshes for numerous problems and numerical methods have been studied since and they are still very much in vogue. With this contribution we try to counter this development and lay the emphasis on more general meshes that - apart from performing better than piecewise-uniform meshes - provide a much deeper insight in the course of their analysis. In this monograph a classification and a survey are given of layer-adapted meshes for convection-diffusion problems. It tries to give a comprehensive review of state-of-the art techniques used in the convergence analysis for various numerical methods: finite differences, finite elements and finite volumes. While for finite difference schemes applied to one-dimensional problems a rather complete convergence theory for arbitrary meshes is developed, the theory is more fragmentary for other methods and problems and still requires the restriction to certain classes of meshes.

Moving Mesh Finite Element Method for Time Dependent Convection-Diffusion Problems

Moving Mesh Finite Element Method for Time Dependent Convection-Diffusion Problems PDF Author: Matthew Maxwell McCoy
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 20

Get Book Here

Book Description
The moving mesh finite element method (MM-FEM) has been a significant force in numerically approximating solutions to differential equations that otherwise exhibit spurious, artificial oscillations. This is especially true for singularly perturbed convection-diffusion problems. In the presence of vanishing molecular diffusivity, MM- FEM may not suffice. The numerical method may exhibit under-diffusive properties and other methods need to be integrated into the classic Galerkin formulation. We implement the so-called streamline upwind Petrov-Galerkin method into the adaptive moving mesh method. In particular, we investigate the computation of so-called enhanced diffusivity for spatiotemporal periodic turbulent flows. We look at the case of Brownian tracer particles, i.e. negligible inertial effects. These types of passive advection-diffusion models are used in atmospheric models with turbulent diffusion, so-called Benard-advection cells, and porous materials, along with many other areas of science and engineering. As molecular diffusivity decreases, interior and boundary layers propagate along the streamlines. Once spurious oscillations are present, they too will propagate along the streamlines. Thus, specialized numerical methods are needed in order to resolve these areas of the domain where large gradients are present. The discrete maximum principle is also investigated for general anisotropic time dependent convection-diffusion equations. We obtain lower and upper bounds for time steps as well as obtain conditions on the mass and stiffness matrices resulting from the SUPG formulation. Our approach depends on two meshes and taking into consideration two diffusion matrices and applying metric intersection.

Adaptive Moving Mesh Methods

Adaptive Moving Mesh Methods PDF Author: Weizhang Huang
Publisher: Springer Science & Business Media
ISBN: 1441979166
Category : Mathematics
Languages : en
Pages : 446

Get Book Here

Book Description
This book is about adaptive mesh generation and moving mesh methods for the numerical solution of time-dependent partial differential equations. It presents a general framework and theory for adaptive mesh generation and gives a comprehensive treatment of moving mesh methods and their basic components, along with their application for a number of nontrivial physical problems. Many explicit examples with computed figures illustrate the various methods and the effects of parameter choices for those methods. Graduate students, researchers and practitioners working in this area will benefit from this book.

A DPG Method for Convection-diffusion Problems

A DPG Method for Convection-diffusion Problems PDF Author: Jesse L. Chan
Publisher:
ISBN:
Category :
Languages : en
Pages : 362

Get Book Here

Book Description
Over the last three decades, CFD simulations have become commonplace as a tool in the engineering and design of high-speed aircraft. Experiments are often complemented by computational simulations, and CFD technologies have proved very useful in both the reduction of aircraft development cycles, and in the simulation of conditions difficult to reproduce experimentally. Great advances have been made in the field since its introduction, especially in areas of meshing, computer architecture, and solution strategies. Despite this, there still exist many computational limitations in existing CFD methods; in particular, reliable higher order and hp-adaptive methods for the Navier-Stokes equations that govern viscous compressible flow. Solutions to the equations of viscous flow can display shocks and boundary layers, which are characterized by localized regions of rapid change and high gradients. The use of adaptive meshes is crucial in such settings -- good resolution for such problems under uniform meshes is computationally prohibitive and impractical for most physical regimes of interest. However, the construction of "good" meshes is a difficult task, usually requiring a-priori knowledge of the form of the solution. An alternative to such is the construction of automatically adaptive schemes; such methods begin with a coarse mesh and refine based on the minimization of error. However, this task is difficult, as the convergence of numerical methods for problems in CFD is notoriously sensitive to mesh quality. Additionally, the use of adaptivity becomes more difficult in the context of higher order and hp methods. Many of the above issues are tied to the notion of robustness, which we define loosely for CFD applications as the degradation of the quality of numerical solutions on a coarse mesh with respect to the Reynolds number, or nondimensional viscosity. For typical physical conditions of interest for the compressible Navier-Stokes equations, the Reynolds number dictates the scale of shock and boundary layer phenomena, and can be extremely high -- on the order of 107 in a unit domain. For an under-resolved mesh, the Galerkin finite element method develops large oscillations which prevent convergence and pollute the solution. The issue of robustness for finite element methods was addressed early on by Brooks and Hughes in the SUPG method, which introduced the idea of residual-based stabilization to combat such oscillations. Residual-based stabilizations can alternatively be viewed as modifying the standard finite element test space, and consequently the norm in which the finite element method converges. Demkowicz and Gopalakrishnan generalized this idea in 2009 by introducing the Discontinous Petrov-Galerkin (DPG) method with optimal test functions, where test functions are determined such that they minimize the discrete linear residual in a dual space. Under the ultra-weak variational formulation, these test functions can be computed locally to yield a symmetric, positive-definite system. The main theoretical thrust of this research is to develop a DPG method that is provably robust for singular perturbation problems in CFD, but does not suffer from discretization error in the approximation of test functions. Such a method is developed for the prototypical singular perturbation problem of convection-diffusion, where it is demonstrated that the method does not suffer from error in the approximation of test functions, and that the L2 error is robustly bounded by the energy error in which DPG is optimal -- in other words, as the energy error decreases, the L2 error of the solution is guaranteed to decrease as well. The method is then extended to the linearized Navier-Stokes equations, and applied to the solution of the nonlinear compressible Navier-Stokes equations. The numerical work in this dissertation has focused on the development of a 2D compressible flow code under the Camellia library, developed and maintained by Nathan Roberts at ICES. In particular, we have developed a framework allowing for rapid implementation of problems and the easy application of higher order and hp-adaptive schemes based on a natural error representation function that stems from the DPG residual. Finally, the DPG method is applied to several convection diffusion problems which mimic difficult problems in compressible flow simulations, including problems exhibiting both boundary layers and singularities in stresses. A viscous Burgers' equation is solved as an extension of DPG to nonlinear problems, and the effectiveness of DPG as a numerical method for compressible flow is assessed with the application of DPG to two benchmark problems in supersonic flow. In particular, DPG is used to solve the Carter flat plate problem and the Holden compression corner problem over a range of Mach numbers and laminar Reynolds numbers using automatically adaptive schemes, beginning with very under-resolved/coarse initial meshes.

Adaptive Finite Volume Methods for Convection-diffusion Equations with Mesh Optimization

Adaptive Finite Volume Methods for Convection-diffusion Equations with Mesh Optimization PDF Author: Wensong Wu
Publisher:
ISBN:
Category : Differential equations, Partial
Languages : en
Pages : 80

Get Book Here

Book Description