Numerical Simulation of Structural Acoustics Using Coupled Finite Element and Boundary Element Techniques

Numerical Simulation of Structural Acoustics Using Coupled Finite Element and Boundary Element Techniques PDF Author: Debashis Basu
Publisher:
ISBN:
Category :
Languages : en
Pages : 434

Get Book Here

Book Description


Fluid-Structure Interaction

Fluid-Structure Interaction PDF Author: Jean-François Sigrist
Publisher: John Wiley & Sons
ISBN: 1119952271
Category : Science
Languages : en
Pages : 309

Get Book Here

Book Description
Fluid-Structure Interaction: An Introduction to Finite Element Coupling fulfils the need for an introductive approach to the general concepts of Finite and Boundary Element Methods for FSI, from the mathematical formulation to the physical interpretation of numerical simulations. Based on the author’s experience in developing numerical codes for industrial applications in shipbuilding and in teaching FSI to both practicing engineers and within academia, it provides a comprehensive and self–contained guide that is geared toward both students and practitioners of mechanical engineering. Composed of six chapters, Fluid–Structure Interaction: An Introduction to Finite Element Coupling progresses logically from formulations and applications involving structure and fluid dynamics, fluid and structure interactions and opens to reduced order-modelling for vibro-acoustic coupling. The author describes simple yet fundamental illustrative examples in detail, using analytical and/or semi–analytical formulation & designed both to illustrate each numerical method and also to highlight a physical aspect of FSI. All proposed examples are simple enough to be computed by the reader using standard computational tools such as MATLAB, making the book a unique tool for self–learning and understanding the basics of the techniques for FSI, or can serve as verification and validation test cases of industrial FEM/BEM codes rendering the book valuable for code verification and validation purposes.

Finite Element and Boundary Methods in Structural Acoustics and Vibration

Finite Element and Boundary Methods in Structural Acoustics and Vibration PDF Author: Noureddine Atalla
Publisher: CRC Press
ISBN: 9781138749177
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
A unique and in-depth presentation of the finite element method (FEM) and the boundary element method (BEM) in structural acoustics and vibrations, this book illustrates the principles using a logical and progressive methodology, which leads to a thorough understanding of their physical and mathematical principles and their implementation to solve a wide range of problems in structural acoustics and vibration. This book helps readers to understand the principles, use of the FEM, and the BEM in structural acoustics and vibrations.

The Scaled Boundary Finite Element Method

The Scaled Boundary Finite Element Method PDF Author: Chongmin Song
Publisher: John Wiley & Sons
ISBN: 1119388457
Category : Science
Languages : en
Pages : 504

Get Book Here

Book Description
An informative look at the theory, computer implementation, and application of the scaled boundary finite element method This reliable resource, complete with MATLAB, is an easy-to-understand introduction to the fundamental principles of the scaled boundary finite element method. It establishes the theory of the scaled boundary finite element method systematically as a general numerical procedure, providing the reader with a sound knowledge to expand the applications of this method to a broader scope. The book also presents the applications of the scaled boundary finite element to illustrate its salient features and potentials. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation covers the static and dynamic stress analysis of solids in two and three dimensions. The relevant concepts, theory and modelling issues of the scaled boundary finite element method are discussed and the unique features of the method are highlighted. The applications in computational fracture mechanics are detailed with numerical examples. A unified mesh generation procedure based on quadtree/octree algorithm is described. It also presents examples of fully automatic stress analysis of geometric models in NURBS, STL and digital images. Written in lucid and easy to understand language by the co-inventor of the scaled boundary element method Provides MATLAB as an integral part of the book with the code cross-referenced in the text and the use of the code illustrated by examples Presents new developments in the scaled boundary finite element method with illustrative examples so that readers can appreciate the significant features and potentials of this novel method—especially in emerging technologies such as 3D printing, virtual reality, and digital image-based analysis The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation is an ideal book for researchers, software developers, numerical analysts, and postgraduate students in many fields of engineering and science.

The Boundary Element Method in Acoustics

The Boundary Element Method in Acoustics PDF Author: Stephen Kirkup
Publisher: Stephen Kirkup
ISBN: 9780953403103
Category : Acoustical engineering
Languages : en
Pages : 136

Get Book Here

Book Description


Coupled Boundary and Finite Element Methods for the Solution of the Dynamic Fluid-Structure Interaction Problem

Coupled Boundary and Finite Element Methods for the Solution of the Dynamic Fluid-Structure Interaction Problem PDF Author: Siamak Amini
Publisher: Springer Science & Business Media
ISBN: 3642517277
Category : Technology & Engineering
Languages : en
Pages : 116

Get Book Here

Book Description
This text considers the problem of the dynamic fluid-structure interaction between a finite elastic structure and the acoustic field in an unbounded fluid-filled exterior domain. The exterior acoustic field is modelled through a boundary integral equation over the structure surface. However, the classical boundary integral equation formulations of this problem either have no solutions or do not have unique solutions at certain characteristic frequencies (which depend on the surface geometry) and it is necessary to employ modified boundary integral equation formulations which are valid for all frequencies. The particular approach adopted here involves an arbitrary coupling parameter and the effect that this parameter has on the stability and accuracy of the numerical method used to solve the integral equation is examined. The boundary integral analysis of the exterior acoustic problem is coupled with a finite element analysis of the elastic structure in order to investigate the interaction between the dynamic behaviour of the structure and the associated acoustic field. Recently there has been some controversy over whether or not the coupled problem also suffers from the non-uniqueness problems associated with the classical integral equation formulations of the exterior acoustic problem. This question is resolved by demonstrating that .the solution to the coupled problem is not unique at the characteristic frequencies and that it is necessary to employ an integral equation formulation valid for all frequencies.

Numerical Simulations in Room Acoustics Using Direct Coupling Techniques and Finite Elements

Numerical Simulations in Room Acoustics Using Direct Coupling Techniques and Finite Elements PDF Author: Martina Pospiech
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832531394
Category : Mathematics
Languages : en
Pages : 142

Get Book Here

Book Description
This thesis presents a coupling approach for time-harmonic problems in linear room acoustics. Therein the closed acoustic system is subdivided into air, sound source and different boundary components. The sound field of each air component is approximated with the help of modal basis functions and continuous transitions between single components are enabled by enforcing coupling conditions. Coupling to realistic boundary conditions is realized by wavenumber- and frequency-dependent impedance functions for plate-like sound absorbers. Afterwards the solution is computed by minimizing the energy based on Hamilton's Principle. For computing the basis functions and the energies of the components the Spectral Finite Element Method and the adapted Patch Recovery Method are applied. Finally numerical benchmark-simulations show the applications of this coupling approach.

Fluid-structure Interaction

Fluid-structure Interaction PDF Author: Cedric Leblond
Publisher: John Wiley & Sons
ISBN: 1394188218
Category : Science
Languages : en
Pages : 404

Get Book Here

Book Description
This book provides a comprehensive overview of the numerical simulation of fluid–structure interaction (FSI) for application in marine engineering. Fluid–Structure Interaction details a wide range of modeling methods (numerical, semi-analytical, empirical), calculation methods (finite element, boundary element, finite volume, lattice Boltzmann method) and numerical approaches (reduced order models and coupling strategy, among others). Written by a group of experts and researchers from the naval sector, this book is intended for those involved in research or design who are looking to gain an overall picture of hydrodynamics, seakeeping and performance under extreme loads, noise and vibration. Using a concise, didactic approach, the book describes the ways in which numerical simulation contributes to modeling and understanding fluid–structure interaction for designing and optimizing the ships of the future.

The Finite Element Method: Its Basis and Fundamentals

The Finite Element Method: Its Basis and Fundamentals PDF Author: Olek C Zienkiewicz
Publisher: Elsevier
ISBN: 008047277X
Category : Technology & Engineering
Languages : en
Pages : 753

Get Book Here

Book Description
The Sixth Edition of this influential best-selling book delivers the most up-to-date and comprehensive text and reference yet on the basis of the finite element method (FEM) for all engineers and mathematicians. Since the appearance of the first edition 38 years ago, The Finite Element Method provides arguably the most authoritative introductory text to the method, covering the latest developments and approaches in this dynamic subject, and is amply supplemented by exercises, worked solutions and computer algorithms. • The classic FEM text, written by the subject's leading authors • Enhancements include more worked examples and exercises • With a new chapter on automatic mesh generation and added materials on shape function development and the use of higher order elements in solving elasticity and field problems Active research has shaped The Finite Element Method into the pre-eminent tool for the modelling of physical systems. It maintains the comprehensive style of earlier editions, while presenting the systematic development for the solution of problems modelled by linear differential equations. Together with the second and third self-contained volumes (0750663219 and 0750663227), The Finite Element Method Set (0750664312) provides a formidable resource covering the theory and the application of FEM, including the basis of the method, its application to advanced solid and structural mechanics and to computational fluid dynamics. The classic introduction to the finite element method, by two of the subject's leading authors Any professional or student of engineering involved in understanding the computational modelling of physical systems will inevitably use the techniques in this key text

Numerical Simulation of Mechatronic Sensors and Actuators

Numerical Simulation of Mechatronic Sensors and Actuators PDF Author: Manfred Kaltenbacher
Publisher: Springer
ISBN: 3642401708
Category : Technology & Engineering
Languages : en
Pages : 600

Get Book Here

Book Description
Like the previous editions also the third edition of this book combines the detailed physical modeling of mechatronic systems and their precise numerical simulation using the Finite Element (FE) method. Thereby, the basic chapter concerning the Finite Element (FE) method is enhanced, provides now also a description of higher order finite elements (both for nodal and edge finite elements) and a detailed discussion of non-conforming mesh techniques. The author enhances and improves many discussions on principles and methods. In particular, more emphasis is put on the description of single fields by adding the flow field. Corresponding to these field, the book is augmented with the new chapter about coupled flow-structural mechanical systems. Thereby, the discussion of computational aeroacoustics is extended towards perturbation approaches, which allows a decomposition of flow and acoustic quantities within the flow region. Last but not least, applications are updated and restructured so that the book meets modern demands.