Numerical Simulation of Nanosecond Repetitively Pulsed Discharges in Air at Atmospheric Pressure

Numerical Simulation of Nanosecond Repetitively Pulsed Discharges in Air at Atmospheric Pressure PDF Author: Fabien Tholin
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
In this Ph.D. thesis, we have carried out numerical simulations to study nanosecond repetitively pulsed discharges (NRPD) in a point-to-point geometry at atmospheric pressure in air and in H2-air mixtures. Experimentally, three discharge regimes have been observed for NRPD in air at atmospheric pressure for the temperature range Tg = 300 to 1000 K: corona, glow and spark. To study these regimes, first, we have considered a discharge occurring during one of the nanosecond voltage pulses. We have shown that a key parameter for the transition between the discharge regimes is the ratio between the connection-time of positive and negative discharges initiated at point electrodes and the pulse duration. In a second step, we have studied the dynamics of charged species during the interpulse at Tg = 300 and 1000 K and we have shown that the discharge characteristics during a given voltage pulse remain rather close whatever the preionization level (in the range 109-1011 cm3) left by previous discharges. Then, we have simulated several consecutive nanosecond voltage pulses at Tg = 1000 K at a repetition frequency of 10 kHz. We have shown that in a few voltage pulses, the discharge reaches a stable quasi-periodic glow regime observed in the experiments. We have studied the nanosecond spark discharge regime. We have shown that the fraction of the discharge energy going to fast heating is in the range 20%- 30%. Due to this fast heating, we have observed the propagation of a cylindrical shockwave followed by the formation of a hot channel in the path of the discharge that expands radially on short timescales (t

Numerical Simulation of Nanosecond Repetitively Pulsed Discharges in Air at Atmospheric Pressure

Numerical Simulation of Nanosecond Repetitively Pulsed Discharges in Air at Atmospheric Pressure PDF Author: Fabien Tholin
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
In this Ph.D. thesis, we have carried out numerical simulations to study nanosecond repetitively pulsed discharges (NRPD) in a point-to-point geometry at atmospheric pressure in air and in H2-air mixtures. Experimentally, three discharge regimes have been observed for NRPD in air at atmospheric pressure for the temperature range Tg = 300 to 1000 K: corona, glow and spark. To study these regimes, first, we have considered a discharge occurring during one of the nanosecond voltage pulses. We have shown that a key parameter for the transition between the discharge regimes is the ratio between the connection-time of positive and negative discharges initiated at point electrodes and the pulse duration. In a second step, we have studied the dynamics of charged species during the interpulse at Tg = 300 and 1000 K and we have shown that the discharge characteristics during a given voltage pulse remain rather close whatever the preionization level (in the range 109-1011 cm3) left by previous discharges. Then, we have simulated several consecutive nanosecond voltage pulses at Tg = 1000 K at a repetition frequency of 10 kHz. We have shown that in a few voltage pulses, the discharge reaches a stable quasi-periodic glow regime observed in the experiments. We have studied the nanosecond spark discharge regime. We have shown that the fraction of the discharge energy going to fast heating is in the range 20%- 30%. Due to this fast heating, we have observed the propagation of a cylindrical shockwave followed by the formation of a hot channel in the path of the discharge that expands radially on short timescales (t

Pulsed Discharge Plasmas

Pulsed Discharge Plasmas PDF Author: Tao Shao
Publisher: Springer Nature
ISBN: 9819911419
Category : Science
Languages : en
Pages : 1028

Get Book Here

Book Description
This book highlights the latest progress in pulsed discharge plasmas presented by front-line researchers worldwide. The science and technology surrounding pulsed discharge plasmas is advanced through a wide scope of interdisciplinary studies into pulsed power and plasma physics. Pulsed discharge plasmas with high-power density, high E/N and high-energy electrons can effectively generate highly reactive plasma. Related applications have gathered strong interests in various fields. With contributions from global scientists, the book elaborates on the theories, numerical simulations, diagnostic methods, discharge characteristics and application technologies of pulsed discharge plasmas. The book is divided into three parts with a total of 35 chapters, including 11 chapters on pulsed discharge generation and mechanism, 12 chapters on pulsed discharge characterization and 12 chapters on pulsed discharge applications (wastewater treatments, biomedicine, surface modification, and energy conversion, etc). The book is a must-have reference for researchers and engineers in related fields and graduate students interested in the subject.

Plasma Kinetics in Atmospheric Gases

Plasma Kinetics in Atmospheric Gases PDF Author: M. Capitelli
Publisher: Springer Science & Business Media
ISBN: 3662041588
Category : Science
Languages : en
Pages : 302

Get Book Here

Book Description
Emphasis is placed on the analysis of translational, rotational, vibrational and electronically excited state kinetics, coupled to the electron Boltzmann equation.

Simulation of Low-Current Discharges in Atmospheric-Pressure Air

Simulation of Low-Current Discharges in Atmospheric-Pressure Air PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Get Book Here

Book Description
Models of two types of discharges in atmospheric pressure air are developed: stationary low current arcs and discharges in fast flows of preliminary heated gas. Results of dischargc simulation are presented for a wide range of external conditions. Calculated plasma parameters are compared with availahle experimental data.

Low Temperature Plasma Technology

Low Temperature Plasma Technology PDF Author: Paul K. Chu
Publisher: CRC Press
ISBN: 1466509902
Category : Science
Languages : en
Pages : 497

Get Book Here

Book Description
Written by a team of pioneering scientists from around the world, Low Temperature Plasma Technology: Methods and Applications brings together recent technological advances and research in the rapidly growing field of low temperature plasmas. The book provides a comprehensive overview of related phenomena such as plasma bullets, plasma penetration into biofilms, discharge-mode transition of atmospheric pressure plasmas, and self-organization of microdischarges. It describes relevant technology and diagnostics, including nanosecond pulsed discharge, cavity ringdown spectroscopy, and laser-induced fluorescence measurement, and explores the increasing research on atmospheric pressure nonequilibrium plasma jets. The authors also discuss how low temperature plasmas are used in the synthesis of nanomaterials, environmental applications, the treatment of biomaterials, and plasma medicine. This book provides a balanced and thorough treatment of the core principles, novel technology and diagnostics, and state-of-the-art applications of low temperature plasmas. It is accessible to scientists and graduate students in low-pressure plasma physics, nanotechnology, plasma medicine, and materials science. The book is also suitable as an advanced reference for senior undergraduate students.

Experimental Investigation of Nanosecond-pulsed Dielectric Barrier Discharge in Atmospheric Pressure Air and Its Application for Direct Liquefaction of Natural Gas

Experimental Investigation of Nanosecond-pulsed Dielectric Barrier Discharge in Atmospheric Pressure Air and Its Application for Direct Liquefaction of Natural Gas PDF Author: Chong Liu
Publisher:
ISBN:
Category : Electric fields
Languages : en
Pages : 316

Get Book Here

Book Description
Experimental investigation of nanosecond-pulsed dielectric barrier discharge in atmospheric pressure air and its application for direct liquefaction of natural gas Chong Liu Advisor: Dr. Danil Dobrynin Uniformity of high-pressure discharges, especially those ignited in air, has been a topic of interest for long time. Conventionally, as the applied electric field (voltage) increases, the breakdown mechanism changes from uniform Townsend discharge to non-uniform streamer discharge. The focus of this thesis is based on the hypothesis that with application of significant over-voltages, i.e., fast rising pulsed electric fields that allow production of electron density suitable for avalanche-streamer transition significantly before the discharge gap is bridged, may result in development of spatially uniform plasma. This study is devoted to testing this hypothesis and characterization of atmospheric air conventional DBD and DBD ignited under over-voltage conditions. The goals of this thesis are to understand the physics and chemistry of nanosecond pulsed DBD in atmospheric pressure gases, and especially atmospheric air, using experimental techniques, to qualitatively and quantitatively characterize the uniform operating regime of atmospheric pressure DBD, and to evaluate its potential applications. In this thesis, fast imaging of the discharge development on nanosecond time scales in atmospheric air was performed, and transition of DBD from streamer to uniform "overvoltage" mode was shown. A quantitative method was developed for analysis of the discharge uniformity. A nanosecond-pulsed dielectric barrier discharge ignited in atmospheric air was studied by optical emission spectroscopy to investigate the time and space-resolved development of the reduced electric field. The discharge temperature and chemistry were studied as well. The major results obtained in this work can be summarized as follows: 0́Ø It is shown that the discharge operates in two distinctively different modes which appear as "uniform" and "non-uniform" regimes. Qualitative uniformity analysis of the discharge images is performed using chi-square test. 0́Ø It is shown that measured maximum local electric field in the discharge is in a good agreement with these modes. We hypothesize that these results can be qualitatively explained by the absence of individual streamers in the uniform mode due to their overlapping and corresponding decrease of the maximum local electric field to the value of average electric field if the discharge. Due to a strong coupling between discharge physics, and reduced electric field in particular, and plasma chemistry (which in turn determines applications of plasmas), possibility of controlling discharge basic parameters together with its uniformity by simply changing applied voltage or distance between electrodes offers unique and exciting opportunities in a wide range of applications, from treatment of biological tissues to energy applications. The possibility of its application on direct liquefaction of natural gas is investigated as a potential application based on the findings.

Plasma Science and Technology

Plasma Science and Technology PDF Author: Haikel Jelassi
Publisher: BoD – Books on Demand
ISBN: 1789852390
Category : Science
Languages : en
Pages : 330

Get Book Here

Book Description
Usually called the "fourth state of matter," plasmas make up more than 99% of known material. In usual terminology, this term generally refers to partially or totally ionized gas and covers a large number of topics with very different characteristics and behaviors. Over the last few decades, the physics and engineering of plasmas was experiencing a renewed interest, essentially born of a series of important applications such as thin-layer deposition, surface treatment, isotopic separation, integrated circuit etchings, medicine, etc. Plasma Science

Hydrogen for Future Thermal Engines

Hydrogen for Future Thermal Engines PDF Author: Efstathios-Al. Tingas
Publisher: Springer Nature
ISBN: 3031284127
Category : Science
Languages : en
Pages : 586

Get Book Here

Book Description
This book explores the potential of hydrogen combustion in thermal engines and serves as a foundation for future research. Hydrogen, a well-established energy carrier, has been used in internal combustion engines for centuries, but despite progress and industry interest, hydrogen engines have yet to reach mass production. In light of recent efforts to combat climate change with clean energy and environmentally-friendly technologies, the use of hydrogen in thermal engines is gaining momentum. This book examines the unique challenges of hydrogen combustion due to its wide flammability limits, high auto-ignition temperature, and high diffusivity. It reviews current knowledge on the fundamental and practical aspects of hydrogen combustion and considers current developments and potential future advancement.

Effect of Airflows on Repetitive Nanosecond Volume Discharges*supported by National Natural Science Foundation of China (Nos. 51006027, 51437002, and 51477035).

Effect of Airflows on Repetitive Nanosecond Volume Discharges*supported by National Natural Science Foundation of China (Nos. 51006027, 51437002, and 51477035). PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Abstract: Atmospheric pressure discharges excited by repetitive nanosecond pulses have attracted significant attention for various applications. In this paper, a plate-plate discharge with airflows is excited by a repetitive nanosecond pulse generator. Under different experiment conditions, the applied voltages, discharge currents, and discharge images are recorded. The plasma images presented here indicate that the volume discharge modes vary with airflow speeds, and a diffuse and homogeneous volume discharge occurs at the speed of more than 35 m/s. The role of airflows provides different effects on the 2-stage pulse discharges. The 1st pulse currents nearly maintain consistency for different airflow speeds. However, the 2nd pulse current has a change trend of first decreasing and then rapidly increasing, and the value difference for 2nd pulse currents is about 20 A under different airflows. In addition, the experimental results are discussed according to the electrical parameters and discharge images.

Spark Discharge

Spark Discharge PDF Author: YuriP. Raizer
Publisher: Routledge
ISBN: 1351415360
Category : Science
Languages : en
Pages : 312

Get Book Here

Book Description
Spark Discharge is a first-of-its-kind text, providing a comprehensive and systematic description of the spark breakdown of long gas gaps. It discusses the nature of a long spark, physical peculiarities of relevant gas discharge processes, methods and results of experimental studies, and analytical and numerical models. The most important applications in high-voltage engineering are covered in a single volume. The straightforward presentation of complicated materials, the deep insight into the nature of the processes, and the simplified mathematical descriptions of the phenomena, make Spark Discharge an excellent textbook for students and an indispensable reference for researchers, physicists, and engineers.