Numerical Models for the Simulation of Nonstationary Effects in Submicron Semiconductor Devices

Numerical Models for the Simulation of Nonstationary Effects in Submicron Semiconductor Devices PDF Author: Edwin Chihchuan Kan
Publisher:
ISBN:
Category :
Languages : en
Pages : 210

Get Book Here

Book Description
Numerical modeling of nonstationary transport effects using partial differential equations derived from the Boltzmann Transport Equation (BTE) is investigated. Augmented drift-diffusion (ADD) models and improved energy transport (ET) models for submicron device simulation are constructed and numerically implemented. Analytical derivation of the length coefficient for the ADD models is presented for both single- and multi-valley approximations. Results of typical $nsp+ - n - nsp+$ ballistic diodes for Si and GaAs are presented. The extension of the ADD model to two dimensions is then formulated, and the implementation problems with the standard box integration method, as used in conventional drift-diffusion (DD) models, are examined. Improved ET models are derived from the zeroth and second moments of the Boltzmann transport equation and from the presumed function form of the even part of the distribution function. Energy band nonparabolicity and non-Maxwellian distribution effects are included to first order. The ET models are amenable to an efficient self-consistent discretization, with standard techniques, taking advantage of the similarity between current and energy flow equations. Numerical results for ballistic diodes and MOSFETs are presented. Typical spurious velocity overshoot spikes, obtained in conventional hydrodynamics simulations of ballistic diodes, are virtually eliminated. By comparing the formulation of the ET and HD models, we find that the spurious spike is caused by the momentum relaxation time approximation and the resulting form of the thermal diffusion terms. Calculations based on a two-carrier-population model, at the anode junction, further confirm our analysis of the spurious spike.

Numerical Models for the Simulation of Nonstationary Effects in Submicron Semiconductor Devices

Numerical Models for the Simulation of Nonstationary Effects in Submicron Semiconductor Devices PDF Author: Edwin Chihchuan Kan
Publisher:
ISBN:
Category :
Languages : en
Pages : 210

Get Book Here

Book Description
Numerical modeling of nonstationary transport effects using partial differential equations derived from the Boltzmann Transport Equation (BTE) is investigated. Augmented drift-diffusion (ADD) models and improved energy transport (ET) models for submicron device simulation are constructed and numerically implemented. Analytical derivation of the length coefficient for the ADD models is presented for both single- and multi-valley approximations. Results of typical $nsp+ - n - nsp+$ ballistic diodes for Si and GaAs are presented. The extension of the ADD model to two dimensions is then formulated, and the implementation problems with the standard box integration method, as used in conventional drift-diffusion (DD) models, are examined. Improved ET models are derived from the zeroth and second moments of the Boltzmann transport equation and from the presumed function form of the even part of the distribution function. Energy band nonparabolicity and non-Maxwellian distribution effects are included to first order. The ET models are amenable to an efficient self-consistent discretization, with standard techniques, taking advantage of the similarity between current and energy flow equations. Numerical results for ballistic diodes and MOSFETs are presented. Typical spurious velocity overshoot spikes, obtained in conventional hydrodynamics simulations of ballistic diodes, are virtually eliminated. By comparing the formulation of the ET and HD models, we find that the spurious spike is caused by the momentum relaxation time approximation and the resulting form of the thermal diffusion terms. Calculations based on a two-carrier-population model, at the anode junction, further confirm our analysis of the spurious spike.

The Physics of Submicron Semiconductor Devices (Nato Asi Series. Series B. Physics, Vol 180)

The Physics of Submicron Semiconductor Devices (Nato Asi Series. Series B. Physics, Vol 180) PDF Author: Harold L. Grubin
Publisher: Springer Science & Business Media
ISBN: 9780306429866
Category : Science
Languages : en
Pages : 762

Get Book Here

Book Description
The papers contained in the volume represent lectures delivered as a 1983 NATO ASI, held at Urbino, Italy. The lecture series was designed to identify the key submicron and ultrasubmicron device physics, transport, materials and contact issues. Nonequilibrium transport, quantum transport, interfacial and size constraints issues were also highlighted. The ASI was supported by NATO and the European Research Office. H. L. Grubin D. K. Ferry C. Jacoboni v CONTENTS MODELLING OF SUB-MICRON DEVICES.................. .......... 1 E. Constant BOLTZMANN TRANSPORT EQUATION... ... ...... .................... 33 K. Hess TRANSPORT AND MATERIAL CONSIDERATIONS FOR SUBMICRON DEVICES. . .. . . . . .. . . . .. . .. . .... ... .. . . . .. . . . .. . . . . . . . . . . 45 H. L. Grubin EPITAXIAL GROWTH FOR SUB MICRON STRUCTURES.................. 179 C. E. C. Wood INSULATOR/SEMICONDUCTOR INTERFACES.......................... 195 C. W. Wilms en THEORY OF THE ELECTRONIC STRUCTURE OF SEMICONDUCTOR SURFACES AND INTERFACES......................................... 223 C. Calandra DEEP LEVELS AT COMPOUND-SEMICONDUCTOR INTERFACES........... 253 W. Monch ENSEMBLE MONTE CARLO TECHNIqUES............................. 289 C. Jacoboni NOISE AND DIFFUSION IN SUBMICRON STRUCTURES................. 323 L. Reggiani SUPERLATTICES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 . . . . . . . . . . . . K. Hess SUBMICRON LITHOGRAPHY 373 C. D. W. Wilkinson and S. P. Beaumont QUANTUM EFFECTS IN DEVICE STRUCTURES DUE TO SUBMICRON CONFINEMENT IN ONE DIMENSION.... ....................... 401 B. D. McCombe vii viii CONTENTS PHYSICS OF HETEROSTRUCTURES AND HETEROSTRUCTURE DEVICES..... 445 P. J. Price CORRELATION EFFECTS IN SHORT TIME, NONS TAT I ONARY TRANSPORT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477 . . . . . . . . . . . . J. J. Niez DEVICE-DEVICE INTERACTIONS............ ...................... 503 D. K. Ferry QUANTUM TRANSPORT AND THE WIGNER FUNCTION................... 521 G. J. Iafrate FAR INFRARED MEASUREMENTS OF VELOCITY OVERSHOOT AND HOT ELECTRON DYNAMICS IN SEMICONDUCTOR DEVICES............. 577 S. J. Allen, Jr.

Numerical Simulations of Semiconductor Devices by Streamline- Diffusion Methods

Numerical Simulations of Semiconductor Devices by Streamline- Diffusion Methods PDF Author: Xunlei Jiang
Publisher:
ISBN:
Category : Semiconductors
Languages : en
Pages : 140

Get Book Here

Book Description
Abstract: "Theoretical and practical aspects of the design and implementation of the streamline-diffusion (SD) method for semiconductor device models are explored systematically. Emphasis is placed on the hydrodynamic (HD) model, which is computationally more challenging than the drift-diffusion (DD) model, but provides some important physical information missing in the DD model. We devise a non-symmetric SD method for device simulations. This numerical method is uniformly used for the HD model (including a proposed simplification (SHD)) and the DD model. An appropriate SD operator is derived for the general non-symmetric convection-diffusion system. Linear stability analysis shows that our proposed numerical method is stable if the system can be symmetrized. Stability arguments and numerical experiments also suggest that the combination of the method of lines and the semidiscrete SD method may not be appropriate for the transient problem, a fact which often has been ignored in the literature. An efficient method, consistent with the SD method used for conservation laws, is developed for the potential equation. The method produces a more accurate electric field than the conventional Galerkin method. Moreover, it solves for the potential and electric field in a decoupled manner. We apply our numerical method to the diode and MESFET devices. Shocks for the diode in one and two space dimensions and the electron depletion near the gate for the MESFET in two space dimensions are simulated. Model comparisons are implemented. We observe that the difference in solutions between the HD and DD models is significant. The solution discrepancy between the full HD and SHD models is almost negligible in MESFET simulation, as in many other engineering applications. However, an exceptional case is found in our experiments."

Simulation and Modeling of Submicron Semiconductor Devices by a New Hydrodynamic Method

Simulation and Modeling of Submicron Semiconductor Devices by a New Hydrodynamic Method PDF Author: Qi Lin (Ph. D.)
Publisher:
ISBN:
Category : Hydrodynamics
Languages : en
Pages : 350

Get Book Here

Book Description


Non-Parabolic Hydrodynamic Formulations for the Simulation of Inhomogeneous Semiconductor Devices

Non-Parabolic Hydrodynamic Formulations for the Simulation of Inhomogeneous Semiconductor Devices PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781722419615
Category :
Languages : en
Pages : 26

Get Book Here

Book Description
Hydrodynamic models are becoming prevalent design tools for small scale devices and other devices in which high energy effects can dominate transport. Most current hydrodynamic models use a parabolic band approximation to obtain fairly simple conservation equations. Interest in accounting for band structure effects in hydrodynamic device simulation has begun to grow since parabolic models can not fully describe the transport in state of the art devices due to the distribution populating non-parabolic states within the band. This paper presents two different non-parabolic formulations of the hydrodynamic model suitable for the simulation of inhomogeneous semiconductor devices. The first formulation uses the Kane dispersion relationship (hk)(exp 2)/2m = W(1 + alpha(W)). The second formulation makes use of a power law ((hk)(exp 2)/2m = xW(sup y)) for the dispersion relation. Hydrodynamic models which use the first formulation rely on the binomial expansion to obtain moment equations with closed form coefficients. This limits the energy range over which the model is valid. The power law formulation readily produces closed form coefficients similar to those obtained using the parabolic band approximation. However, the fitting parameters (x, y) are only valid over a limited energy range. The physical significance of the band non-parabolicity is discussed as well as the advantages/disadvantages and approximations of the two non-parabolic models. A companion paper describes device simulations based on the three dispersion relationships: parabolic, Kane dispersion, and power low dispersion. Smith, Arlynn W. and Brennan, Kevin F. Unspecified Center MDA972-93-1-0030; NAGw-2753; NSF ECS-93-13635..

Physics-based Modeling of Hot-electron Effects in Submicron Semiconductor Devices for CAD Applications

Physics-based Modeling of Hot-electron Effects in Submicron Semiconductor Devices for CAD Applications PDF Author: Shiuh-Luen Wang
Publisher:
ISBN:
Category : Hot carriers
Languages : en
Pages : 330

Get Book Here

Book Description


Numerical Simulation of Semiconductor Structures

Numerical Simulation of Semiconductor Structures PDF Author: Abel Garcia-Barrientos
Publisher:
ISBN: 9781493557257
Category :
Languages : en
Pages : 198

Get Book Here

Book Description
The investigation of new materials, devices and techniques to improve the performance of telecommunications, spectroscopy and radar systems applications, has caused that the study of non-stationary effects of space charge in semiconductor structures be a strategy research area in the field of high speed semiconductor devices. Therefore, this book focuses in the study of the non-stationary effects of the space charge in semiconductor structures, where the nonlinear wave interaction in active media may serve to improve the high-frequency performance of semiconductor devices.

Numerical Simulation

Numerical Simulation PDF Author: Mykhaylo Andriychuk
Publisher: BoD – Books on Demand
ISBN: 9535107496
Category : Computers
Languages : en
Pages : 662

Get Book Here

Book Description
Numerical Simulation - from Theory to Industry is the edited book containing 25 chapters and divided into four parts. Part 1 is devoted to the background and novel advances of numerical simulation; second part contains simulation applications in the macro- and micro-electrodynamics. Part 3 includes contributions related to fluid dynamics in the natural environment and scientific applications; the last, fourth part is dedicated to simulation in the industrial areas, such as power engineering, metallurgy and building. Recent numerical techniques, as well as software the most accurate and advanced in treating the physical phenomena, are applied in order to explain the investigated processes in terms of numbers. Since the numerical simulation plays a key role in both theoretical and industrial research, this book related to simulation of many physical processes, will be useful for the pure research scientists, applied mathematicians, industrial engineers, and post-graduate students.

Computational Electronics

Computational Electronics PDF Author: Karl Hess
Publisher: Springer Science & Business Media
ISBN: 1475721242
Category : Technology & Engineering
Languages : en
Pages : 273

Get Book Here

Book Description
Large computational resources are of ever increasing importance for the simulation of semiconductor processes, devices and integrated circuits. The Workshop on Computational Electronics was intended to be a forum for the dis cussion of the state-of-the-art of device simulation. Three major research areas were covered: conventional simulations, based on the drift-diffusion and the hydrodynamic models; Monte Carlo methods and other techniques for the solution of the Boltzmann transport equation; and computational approaches to quantum transport which are relevant to novel devices based on quantum interference and resonant tunneling phenomena. Our goal was to bring together researchers from various disciplines that contribute to the advancement of device simulation. These include Computer Sci ence, Electrical Engineering, Applied Physics and Applied Mathematics. The suc cess of this multidisciplinary formula was proven by numerous interactions which took place at the Workshop and during the following three-day Short Course on Computational Electronics. The format of the course, including a number of tutorial lectures, and the large attendance of graduate students, stimulated many discussions and has proven to us once more the importance of cross-fertilization between the different disciplines.

Simulation of Semiconductor Devices and Processes

Simulation of Semiconductor Devices and Processes PDF Author: Siegfried Selberherr
Publisher: Springer
ISBN: 9780387825045
Category : Science
Languages : en
Pages : 532

Get Book Here

Book Description