Author: Peter Hartley
Publisher: Springer Science & Business Media
ISBN: 144711745X
Category : Technology & Engineering
Languages : en
Pages : 476
Book Description
The principal aim of this text is to encourage the development and application of numerical modelling techniques as an aid to achieving greater efficiency and optimization of metal-forming processes. The contents of this book have therefore been carefully planned to provide both an introduction to the fundamental theory of material deformation simulation, and also a comprehensive survey of the "state-of-the-art" of deformation modelling techniques and their application to specific and industrially relevant processes. To this end, leading international figures in the field of material deformation research have been invited to contribute chapters on subjects on which they are acknowledged experts. The information in this book has been arranged in four parts: Part I deals with plasticity theory, Part II with various numerical modelling techniques, Part III with specific process applications and material phenomena and Part IV with integrated computer systems. The objective of Part I is to establish the underlying theory of material deformation on which the following chapters can build. It begins with a chapter which reviews the basic theories of classical plasticity and describes their analytical representations. The second chapter moves on to look at the theory of deforming materials and shows how these expressions may be used in numerical techniques. The last two chapters of Part I provide a review of isotropic plasticity and anisotropic plasticity.
Numerical Modelling of Material Deformation Processes
Author: Peter Hartley
Publisher: Springer Science & Business Media
ISBN: 144711745X
Category : Technology & Engineering
Languages : en
Pages : 476
Book Description
The principal aim of this text is to encourage the development and application of numerical modelling techniques as an aid to achieving greater efficiency and optimization of metal-forming processes. The contents of this book have therefore been carefully planned to provide both an introduction to the fundamental theory of material deformation simulation, and also a comprehensive survey of the "state-of-the-art" of deformation modelling techniques and their application to specific and industrially relevant processes. To this end, leading international figures in the field of material deformation research have been invited to contribute chapters on subjects on which they are acknowledged experts. The information in this book has been arranged in four parts: Part I deals with plasticity theory, Part II with various numerical modelling techniques, Part III with specific process applications and material phenomena and Part IV with integrated computer systems. The objective of Part I is to establish the underlying theory of material deformation on which the following chapters can build. It begins with a chapter which reviews the basic theories of classical plasticity and describes their analytical representations. The second chapter moves on to look at the theory of deforming materials and shows how these expressions may be used in numerical techniques. The last two chapters of Part I provide a review of isotropic plasticity and anisotropic plasticity.
Publisher: Springer Science & Business Media
ISBN: 144711745X
Category : Technology & Engineering
Languages : en
Pages : 476
Book Description
The principal aim of this text is to encourage the development and application of numerical modelling techniques as an aid to achieving greater efficiency and optimization of metal-forming processes. The contents of this book have therefore been carefully planned to provide both an introduction to the fundamental theory of material deformation simulation, and also a comprehensive survey of the "state-of-the-art" of deformation modelling techniques and their application to specific and industrially relevant processes. To this end, leading international figures in the field of material deformation research have been invited to contribute chapters on subjects on which they are acknowledged experts. The information in this book has been arranged in four parts: Part I deals with plasticity theory, Part II with various numerical modelling techniques, Part III with specific process applications and material phenomena and Part IV with integrated computer systems. The objective of Part I is to establish the underlying theory of material deformation on which the following chapters can build. It begins with a chapter which reviews the basic theories of classical plasticity and describes their analytical representations. The second chapter moves on to look at the theory of deforming materials and shows how these expressions may be used in numerical techniques. The last two chapters of Part I provide a review of isotropic plasticity and anisotropic plasticity.
Numerical Modelling and Simulation of Metal Processing
Author: Christof Sommitsch
Publisher: MDPI
ISBN: 303651080X
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
This book deals with metal processing and its numerical modelling and simulation. In total, 21 papers from different distinguished authors have been compiled in this area. Various processes are addressed, including solidification, TIG welding, additive manufacturing, hot and cold rolling, deep drawing, pipe deformation, and galvanizing. Material models are developed at different length scales from atomistic simulation to finite element analysis in order to describe the evolution and behavior of materials during thermal and thermomechanical treatment. Materials under consideration are carbon, Q&T, DP, and stainless steels; ductile iron; and aluminum, nickel-based, and titanium alloys. The developed models and simulations shall help to predict structure evolution, damage, and service behavior of advanced materials.
Publisher: MDPI
ISBN: 303651080X
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
This book deals with metal processing and its numerical modelling and simulation. In total, 21 papers from different distinguished authors have been compiled in this area. Various processes are addressed, including solidification, TIG welding, additive manufacturing, hot and cold rolling, deep drawing, pipe deformation, and galvanizing. Material models are developed at different length scales from atomistic simulation to finite element analysis in order to describe the evolution and behavior of materials during thermal and thermomechanical treatment. Materials under consideration are carbon, Q&T, DP, and stainless steels; ductile iron; and aluminum, nickel-based, and titanium alloys. The developed models and simulations shall help to predict structure evolution, damage, and service behavior of advanced materials.
Deformation-Based Processing of Materials
Author: Heng Li
Publisher: Elsevier
ISBN: 0128143819
Category : Technology & Engineering
Languages : en
Pages : 350
Book Description
Deformation Based Processing of Materials: Behavior, Performance, Modeling and Control focuses on deformation based process behaviors and process performance in terms of the quality of the needed shape, geometries, and the requested properties of the deformed products. In addition, modelling and simulation is covered to create an in-depth and epistemological understanding of the process. Other topics discussed include ways to efficiently reduce or avoid defects and effectively improve the quality of deformed parts. The book is ideal as a technical document, but also serves as scientific literature for engineers, scientists, academics, research students and management professionals involved in deformation based materials processing.
Publisher: Elsevier
ISBN: 0128143819
Category : Technology & Engineering
Languages : en
Pages : 350
Book Description
Deformation Based Processing of Materials: Behavior, Performance, Modeling and Control focuses on deformation based process behaviors and process performance in terms of the quality of the needed shape, geometries, and the requested properties of the deformed products. In addition, modelling and simulation is covered to create an in-depth and epistemological understanding of the process. Other topics discussed include ways to efficiently reduce or avoid defects and effectively improve the quality of deformed parts. The book is ideal as a technical document, but also serves as scientific literature for engineers, scientists, academics, research students and management professionals involved in deformation based materials processing.
Modelling and Simulation of Sheet Metal Forming Processes
Author: Marta C. Oliveira
Publisher: MDPI
ISBN: 3039285564
Category : Technology & Engineering
Languages : en
Pages : 254
Book Description
The numerical simulation of sheet metal forming processes has become an indispensable tool for the design of components and their forming processes. This role was attained due to the huge impact in reducing time to market and the cost of developing new components in industries ranging from automotive to packing, as well as enabling an improved understanding of the deformation mechanisms and their interaction with process parameters. Despite being a consolidated tool, its potential for application continues to be discovered with the continuous need to simulate more complex processes, including the integration of the various processes involved in the production of a sheet metal component and the analysis of in-service behavior. The quest for more robust and sustainable processes has also changed its deterministic character into stochastic to be able to consider the scatter in mechanical properties induced by previous manufacturing processes. Faced with these challenges, this Special Issue presents scientific advances in the development of numerical tools that improve the prediction results for conventional forming process, enable the development of new forming processes, or contribute to the integration of several manufacturing processes, highlighting the growing multidisciplinary characteristic of this field.
Publisher: MDPI
ISBN: 3039285564
Category : Technology & Engineering
Languages : en
Pages : 254
Book Description
The numerical simulation of sheet metal forming processes has become an indispensable tool for the design of components and their forming processes. This role was attained due to the huge impact in reducing time to market and the cost of developing new components in industries ranging from automotive to packing, as well as enabling an improved understanding of the deformation mechanisms and their interaction with process parameters. Despite being a consolidated tool, its potential for application continues to be discovered with the continuous need to simulate more complex processes, including the integration of the various processes involved in the production of a sheet metal component and the analysis of in-service behavior. The quest for more robust and sustainable processes has also changed its deterministic character into stochastic to be able to consider the scatter in mechanical properties induced by previous manufacturing processes. Faced with these challenges, this Special Issue presents scientific advances in the development of numerical tools that improve the prediction results for conventional forming process, enable the development of new forming processes, or contribute to the integration of several manufacturing processes, highlighting the growing multidisciplinary characteristic of this field.
Unit Manufacturing Processes
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309176670
Category : Technology & Engineering
Languages : en
Pages : 228
Book Description
Manufacturing, reduced to its simplest form, involves the sequencing of product forms through a number of different processes. Each individual step, known as an unit manufacturing process, can be viewed as the fundamental building block of a nation's manufacturing capability. A committee of the National Research Council has prepared a report to help define national priorities for research in unit processes. It contains an organizing framework for unit process families, criteria for determining the criticality of a process or manufacturing technology, examples of research opportunities, and a prioritized list of enabling technologies that can lead to the manufacture of products of superior quality at competitive costs. The study was performed under the sponsorship of the National Science Foundation and the Defense Department's Manufacturing Technology Program.
Publisher: National Academies Press
ISBN: 0309176670
Category : Technology & Engineering
Languages : en
Pages : 228
Book Description
Manufacturing, reduced to its simplest form, involves the sequencing of product forms through a number of different processes. Each individual step, known as an unit manufacturing process, can be viewed as the fundamental building block of a nation's manufacturing capability. A committee of the National Research Council has prepared a report to help define national priorities for research in unit processes. It contains an organizing framework for unit process families, criteria for determining the criticality of a process or manufacturing technology, examples of research opportunities, and a prioritized list of enabling technologies that can lead to the manufacture of products of superior quality at competitive costs. The study was performed under the sponsorship of the National Science Foundation and the Defense Department's Manufacturing Technology Program.
Numerical Modelling of Material Deformation Processes
Author: Peter Hartley
Publisher: Springer
ISBN: 9783540195849
Category : Technology & Engineering
Languages : en
Pages : 460
Book Description
The principal aim of this text is to encourage the development and application of numerical modelling techniques as an aid to achieving greater efficiency and optimization of metal-forming processes. The contents of this book have therefore been carefully planned to provide both an introduction to the fundamental theory of material deformation simulation, and also a comprehensive survey of the "state-of-the-art" of deformation modelling techniques and their application to specific and industrially relevant processes. To this end, leading international figures in the field of material deformation research have been invited to contribute chapters on subjects on which they are acknowledged experts. The information in this book has been arranged in four parts: Part I deals with plasticity theory, Part II with various numerical modelling techniques, Part III with specific process applications and material phenomena and Part IV with integrated computer systems. The objective of Part I is to establish the underlying theory of material deformation on which the following chapters can build. It begins with a chapter which reviews the basic theories of classical plasticity and describes their analytical representations. The second chapter moves on to look at the theory of deforming materials and shows how these expressions may be used in numerical techniques. The last two chapters of Part I provide a review of isotropic plasticity and anisotropic plasticity.
Publisher: Springer
ISBN: 9783540195849
Category : Technology & Engineering
Languages : en
Pages : 460
Book Description
The principal aim of this text is to encourage the development and application of numerical modelling techniques as an aid to achieving greater efficiency and optimization of metal-forming processes. The contents of this book have therefore been carefully planned to provide both an introduction to the fundamental theory of material deformation simulation, and also a comprehensive survey of the "state-of-the-art" of deformation modelling techniques and their application to specific and industrially relevant processes. To this end, leading international figures in the field of material deformation research have been invited to contribute chapters on subjects on which they are acknowledged experts. The information in this book has been arranged in four parts: Part I deals with plasticity theory, Part II with various numerical modelling techniques, Part III with specific process applications and material phenomena and Part IV with integrated computer systems. The objective of Part I is to establish the underlying theory of material deformation on which the following chapters can build. It begins with a chapter which reviews the basic theories of classical plasticity and describes their analytical representations. The second chapter moves on to look at the theory of deforming materials and shows how these expressions may be used in numerical techniques. The last two chapters of Part I provide a review of isotropic plasticity and anisotropic plasticity.
Introduction to Numerical Geodynamic Modelling
Author: Taras Gerya
Publisher: Cambridge University Press
ISBN: 0521887542
Category : Mathematics
Languages : en
Pages : 359
Book Description
This user-friendly reference for students and researchers presents the basic mathematical theory, before introducing modelling of key geodynamic processes.
Publisher: Cambridge University Press
ISBN: 0521887542
Category : Mathematics
Languages : en
Pages : 359
Book Description
This user-friendly reference for students and researchers presents the basic mathematical theory, before introducing modelling of key geodynamic processes.
Modeling of Metal Forming and Machining Processes
Author: Prakash Mahadeo Dixit
Publisher: Springer Science & Business Media
ISBN: 1848001894
Category : Technology & Engineering
Languages : en
Pages : 599
Book Description
Written by authorities in the subject, this book provides a complete treatment of metal forming and machining by using the computational techniques FEM, fuzzy set theory and neural networks as modelling tools. The algorithms and solved examples included make this book of value to postgraduates, senior undergraduates, and lecturers and researchers in these fields. Research and development engineers and consultants for the manufacturing industry will also find it of use.
Publisher: Springer Science & Business Media
ISBN: 1848001894
Category : Technology & Engineering
Languages : en
Pages : 599
Book Description
Written by authorities in the subject, this book provides a complete treatment of metal forming and machining by using the computational techniques FEM, fuzzy set theory and neural networks as modelling tools. The algorithms and solved examples included make this book of value to postgraduates, senior undergraduates, and lecturers and researchers in these fields. Research and development engineers and consultants for the manufacturing industry will also find it of use.
Numerical Modelling
Author: Peep Miidla
Publisher: BoD – Books on Demand
ISBN: 9535102192
Category : Computers
Languages : en
Pages : 422
Book Description
This book demonstrates applications and case studies performed by experts for professionals and students in the field of technology, engineering, materials, decision making management and other industries in which mathematical modelling plays a role. Each chapter discusses an example and these are ranging from well-known standards to novelty applications. Models are developed and analysed in details, authors carefully consider the procedure for constructing a mathematical replacement of phenomenon under consideration. For most of the cases this leads to the partial differential equations, for the solution of which numerical methods are necessary to use. The term Model is mainly understood as an ensemble of equations which describe the variables and interrelations of a physical system or process. Developments in computer technology and related software have provided numerous tools of increasing power for specialists in mathematical modelling. One finds a variety of these used to obtain the numerical results of the book.
Publisher: BoD – Books on Demand
ISBN: 9535102192
Category : Computers
Languages : en
Pages : 422
Book Description
This book demonstrates applications and case studies performed by experts for professionals and students in the field of technology, engineering, materials, decision making management and other industries in which mathematical modelling plays a role. Each chapter discusses an example and these are ranging from well-known standards to novelty applications. Models are developed and analysed in details, authors carefully consider the procedure for constructing a mathematical replacement of phenomenon under consideration. For most of the cases this leads to the partial differential equations, for the solution of which numerical methods are necessary to use. The term Model is mainly understood as an ensemble of equations which describe the variables and interrelations of a physical system or process. Developments in computer technology and related software have provided numerous tools of increasing power for specialists in mathematical modelling. One finds a variety of these used to obtain the numerical results of the book.
Numerical Modeling of Materials Under Extreme Conditions
Author: Nicola Bonora
Publisher: Springer
ISBN: 3642542581
Category : Technology & Engineering
Languages : en
Pages : 230
Book Description
The book presents twelve state of the art contributions in the field of numerical modeling of materials subjected to large strain, high strain rates, large pressure and high stress triaxialities, organized into two sections. The first part is focused on high strain rate-high pressures such as those occurring in impact dynamics and shock compression related phenomena, dealing with material response identification, advanced modeling incorporating microstructure and damage, stress waves propagation in solids and structures response under impact. The latter part is focused on large strain-low strain rates applications such as those occurring in technological material processing, dealing with microstructure and texture evolution, material response at elevated temperatures, structural behavior under large strain and multi axial state of stress.
Publisher: Springer
ISBN: 3642542581
Category : Technology & Engineering
Languages : en
Pages : 230
Book Description
The book presents twelve state of the art contributions in the field of numerical modeling of materials subjected to large strain, high strain rates, large pressure and high stress triaxialities, organized into two sections. The first part is focused on high strain rate-high pressures such as those occurring in impact dynamics and shock compression related phenomena, dealing with material response identification, advanced modeling incorporating microstructure and damage, stress waves propagation in solids and structures response under impact. The latter part is focused on large strain-low strain rates applications such as those occurring in technological material processing, dealing with microstructure and texture evolution, material response at elevated temperatures, structural behavior under large strain and multi axial state of stress.