Numerical Modeling of Combustion Problems with Adaptive Grid Methods

Numerical Modeling of Combustion Problems with Adaptive Grid Methods PDF Author: Farhad Raiszadeh
Publisher:
ISBN:
Category :
Languages : en
Pages : 262

Get Book Here

Book Description

Numerical Modeling of Combustion Problems with Adaptive Grid Methods

Numerical Modeling of Combustion Problems with Adaptive Grid Methods PDF Author: Farhad Raiszadeh
Publisher:
ISBN:
Category :
Languages : en
Pages : 262

Get Book Here

Book Description


Turbulent Combustion Modeling

Turbulent Combustion Modeling PDF Author: Tarek Echekki
Publisher: Springer Science & Business Media
ISBN: 9400704127
Category : Technology & Engineering
Languages : en
Pages : 496

Get Book Here

Book Description
Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.

On the Use of Adaptive Moving Grid Methods in Combustion Problems

On the Use of Adaptive Moving Grid Methods in Combustion Problems PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The investigators have presented the reasons and advantages of adaptively moving the mesh points for the solution of time-dependent PDEs (partial differential equations) systems developing sharp gradients, and more specifically for combustion problems. Several available adaptive dynamic rezone methods have been briefly reviewed, and the effectiveness of these algorithms for combustion problems has been illustrated by the numerical solution of a simple flame propagation problem. 29 refs., 7 figs.

Numerical Modeling of Spray Combustion with an Unstructured-grid Method

Numerical Modeling of Spray Combustion with an Unstructured-grid Method PDF Author: H. M. Shang
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Adaptive Mesh Refinement - Theory and Applications

Adaptive Mesh Refinement - Theory and Applications PDF Author: Tomasz Plewa
Publisher: Springer Science & Business Media
ISBN: 3540270396
Category : Mathematics
Languages : en
Pages : 550

Get Book Here

Book Description
Advanced numerical simulations that use adaptive mesh refinement (AMR) methods have now become routine in engineering and science. Originally developed for computational fluid dynamics applications these methods have propagated to fields as diverse as astrophysics, climate modeling, combustion, biophysics and many others. The underlying physical models and equations used in these disciplines are rather different, yet algorithmic and implementation issues facing practitioners are often remarkably similar. Unfortunately, there has been little effort to review the advances and outstanding issues of adaptive mesh refinement methods across such a variety of fields. This book attempts to bridge this gap. The book presents a collection of papers by experts in the field of AMR who analyze past advances in the field and evaluate the current state of adaptive mesh refinement methods in scientific computing.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 702

Get Book Here

Book Description


Gasdynamics of Explosions and Reactive Systems

Gasdynamics of Explosions and Reactive Systems PDF Author: A. K. Oppenheim
Publisher: Elsevier
ISBN: 1483150054
Category : Science
Languages : en
Pages : 787

Get Book Here

Book Description
Gas Dynamics of Explosions and Reactive Systems documents the proceedings of the 6th Colloquium held at the Royal Institute of Technology in Stockholm, Sweden, 22-26 August 1977. The meeting was held under the auspices of the Royal Swedish Academy of Sciences and the International Academy of Astronautics. The scientific program included over one hundred papers. The contributions in this volume are organized into four parts. Part I contains papers on gaseous detonations. It covers topics such as theoretical model of a detonation cell; spherical detonations in hydrocarbon-air mixtures; and shock wave propagation in tubes filled with water foams. Part II presents studies on explosions, such as the detonation of hydrogen azide and propagation of a laser-supported detonation wave. Part III examines condensed phase detonations. It includes papers on the mechanism of the divergent and convergent dark waves originating at the charge boundary in detonating liquid homogeneous explosives with unstable detonation front; and initiation studies in sensitized nitromethane. Part IV presents discussions on turbulent detonations, covering topics such as the computational aspects of turbulent combustion and problems and techniques in turbulent reactive systems.

Adaptive and Convergent Methods for Large Eddy Simulation of Turbulent Combustion

Adaptive and Convergent Methods for Large Eddy Simulation of Turbulent Combustion PDF Author: Colin Russell Heye
Publisher:
ISBN:
Category :
Languages : en
Pages : 352

Get Book Here

Book Description
In the recent past, LES methodology has emerged as a viable tool for modeling turbulent combustion. LES computes the large scale mixing process accurately, thereby providing a better starting point for small-scale models that describe the combustion process. Significant effort has been made over past decades to improve accuracy and applicability of the LES approach to a wide range of flows, though the current conventions often lack consistency to the problems at hand. To this end, the two main objectives of this dissertation are to develop a dynamic transport equation-based combustion model for large- eddy simulation (LES) of turbulent spray combustion and to investigate grid- independent LES modeling for scalar mixing. Long-standing combustion modeling approaches have shown to be suc- cessful for a wide range of gas-phase flames, however, the assumptions required to derive these formulations are invalidated in the presence of liquid fuels and non-negligible evaporation rates. In the first part of this work, a novel ap- proach is developed to account for these evaporation effects and the resulting multi-regime combustion process. First, the mathematical formulation is de- rived and the numerical implementation in a low-Mach number computational solver is verified against one-dimensional and lab scale, both non-reacting and reacting spray-laden flows. In order to clarify the modeling requirements in LES for spray combustion applications, results from a suite of fully-resolved direct numerical simulations (DNS) of a spray laden planar jet flame are fil- tered at a range of length scales. LES results are then validated against two sets of experimental jet flames, one having a pilot and allowing for reduced chemistry modeling and the second requiring the use of detail chemistry with in situ tabulation to reduce the computational cost of the direct integration of a chemical mechanism. The conventional LES governing equations are derived from a low-pass filtering of the Navier-Stokes equations. In practice, the filter used to derive the LES governing equations is not formally defined and instead, it is assumed that the discretization of LES equations will implicitly act as a low-pass filter. The second part of this study investigates an alternative derivation of the LES governing equations that requires the formal definition of the filtering operator, known as explicitly filtered LES. It has been shown that decoupling the filter- ing operation from the underlying grid allows for the isolation of subfilter-scale modeling errors from numerical discretization errors. Specific to combustion modeling are the aggregate errors associated with modeling sub-filter distribu- tions of scalars that are transported by numerical impacted turbulent fields. Quantities of interest to commonly-used combustion models, including sub- filter scalar variance and filtered scalar dissipation rate, are investigated for both homogeneous and shear-driven turbulent mixing.

An Adaptive Projection Method for the Modeling of Unsteady, Low-Mach Number Combustion

An Adaptive Projection Method for the Modeling of Unsteady, Low-Mach Number Combustion PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 28

Get Book Here

Book Description
In this paper the authors present an adaptive projection method for modeling unsteady, low-Mach reacting flow in an unconfined region. The equations they solve are based on a model for low-Mach number combustion that consists of the evolution equations for density, species concentrations, enthalpy, and momentum coupled with a constraint on the divergence of the flow. The algorithm is based on a projection methodology in which they first advance the evolution equations and then solve an elliptic equation to enforce the divergence constraint. The adaptive mesh refinement (AMR) scheme uses a time-varying, hierarchical grid structure composed of uniform rectangular grids of varying resolution. The integration scheme on the grid hierarchy is a recursive procedure in which a coarse grid is advanced, fine grids are advanced multiple steps to reach the same time as the coarse grid, and the coarse and the fine grids are synchronized. The method is valid for multiple grids on each level and multiple levels of refinement. The method is currently implemented for laminar, axisymmetric flames with a reduced kinetics mechanism and a Lewis number of unity. Two methane-air flames, one steady and the other flickering, are presented as numerical examples.

A Collection of Technical Papers

A Collection of Technical Papers PDF Author:
Publisher:
ISBN:
Category : Fluid dynamic measurements
Languages : en
Pages : 510

Get Book Here

Book Description