Author: Erich Novak
Publisher: Springer
ISBN: 3540459871
Category : Mathematics
Languages : en
Pages : 118
Book Description
In these notes different deterministic and stochastic error bounds of numerical analysis are investigated. For many computational problems we have only partial information (such as n function values) and consequently they can only be solved with uncertainty in the answer. Optimal methods and optimal error bounds are sought if only the type of information is indicated. First, worst case error bounds and their relation to the theory of n-widths are considered; special problems such approximation, optimization, and integration for different function classes are studied and adaptive and nonadaptive methods are compared. Deterministic (worst case) error bounds are often unrealistic and should be complemented by different average error bounds. The error of Monte Carlo methods and the average error of deterministic methods are discussed as are the conceptual difficulties of different average errors. An appendix deals with the existence and uniqueness of optimal methods. This book is an introduction to the area and also a research monograph containing new results. It is addressd to a general mathematical audience as well as specialists in the areas of numerical analysis and approximation theory (especially optimal recovery and information-based complexity).
Deterministic and Stochastic Error Bounds in Numerical Analysis
Author: Erich Novak
Publisher: Springer
ISBN: 3540459871
Category : Mathematics
Languages : en
Pages : 118
Book Description
In these notes different deterministic and stochastic error bounds of numerical analysis are investigated. For many computational problems we have only partial information (such as n function values) and consequently they can only be solved with uncertainty in the answer. Optimal methods and optimal error bounds are sought if only the type of information is indicated. First, worst case error bounds and their relation to the theory of n-widths are considered; special problems such approximation, optimization, and integration for different function classes are studied and adaptive and nonadaptive methods are compared. Deterministic (worst case) error bounds are often unrealistic and should be complemented by different average error bounds. The error of Monte Carlo methods and the average error of deterministic methods are discussed as are the conceptual difficulties of different average errors. An appendix deals with the existence and uniqueness of optimal methods. This book is an introduction to the area and also a research monograph containing new results. It is addressd to a general mathematical audience as well as specialists in the areas of numerical analysis and approximation theory (especially optimal recovery and information-based complexity).
Publisher: Springer
ISBN: 3540459871
Category : Mathematics
Languages : en
Pages : 118
Book Description
In these notes different deterministic and stochastic error bounds of numerical analysis are investigated. For many computational problems we have only partial information (such as n function values) and consequently they can only be solved with uncertainty in the answer. Optimal methods and optimal error bounds are sought if only the type of information is indicated. First, worst case error bounds and their relation to the theory of n-widths are considered; special problems such approximation, optimization, and integration for different function classes are studied and adaptive and nonadaptive methods are compared. Deterministic (worst case) error bounds are often unrealistic and should be complemented by different average error bounds. The error of Monte Carlo methods and the average error of deterministic methods are discussed as are the conceptual difficulties of different average errors. An appendix deals with the existence and uniqueness of optimal methods. This book is an introduction to the area and also a research monograph containing new results. It is addressd to a general mathematical audience as well as specialists in the areas of numerical analysis and approximation theory (especially optimal recovery and information-based complexity).
Exploring Numerical Methods
Author: Peter Linz
Publisher: Jones & Bartlett Learning
ISBN: 9780763714994
Category : Mathematics
Languages : en
Pages : 494
Book Description
Advanced Mathematics
Publisher: Jones & Bartlett Learning
ISBN: 9780763714994
Category : Mathematics
Languages : en
Pages : 494
Book Description
Advanced Mathematics
Numerical Algorithms
Author: Justin Solomon
Publisher: CRC Press
ISBN: 1482251892
Category : Computers
Languages : en
Pages : 400
Book Description
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig
Publisher: CRC Press
ISBN: 1482251892
Category : Computers
Languages : en
Pages : 400
Book Description
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig
Accuracy and Stability of Numerical Algorithms
Author: Nicholas J. Higham
Publisher: SIAM
ISBN: 9780898718027
Category : Mathematics
Languages : en
Pages : 710
Book Description
Accuracy and Stability of Numerical Algorithms gives a thorough, up-to-date treatment of the behavior of numerical algorithms in finite precision arithmetic. It combines algorithmic derivations, perturbation theory, and rounding error analysis, all enlivened by historical perspective and informative quotations. This second edition expands and updates the coverage of the first edition (1996) and includes numerous improvements to the original material. Two new chapters treat symmetric indefinite systems and skew-symmetric systems, and nonlinear systems and Newton's method. Twelve new sections include coverage of additional error bounds for Gaussian elimination, rank revealing LU factorizations, weighted and constrained least squares problems, and the fused multiply-add operation found on some modern computer architectures.
Publisher: SIAM
ISBN: 9780898718027
Category : Mathematics
Languages : en
Pages : 710
Book Description
Accuracy and Stability of Numerical Algorithms gives a thorough, up-to-date treatment of the behavior of numerical algorithms in finite precision arithmetic. It combines algorithmic derivations, perturbation theory, and rounding error analysis, all enlivened by historical perspective and informative quotations. This second edition expands and updates the coverage of the first edition (1996) and includes numerous improvements to the original material. Two new chapters treat symmetric indefinite systems and skew-symmetric systems, and nonlinear systems and Newton's method. Twelve new sections include coverage of additional error bounds for Gaussian elimination, rank revealing LU factorizations, weighted and constrained least squares problems, and the fused multiply-add operation found on some modern computer architectures.
Numerical Methods for Large Eigenvalue Problems
Author: Yousef Saad
Publisher: SIAM
ISBN: 1611970725
Category : Mathematics
Languages : en
Pages : 285
Book Description
This revised edition discusses numerical methods for computing the eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method and automatic multilevel substructuring.
Publisher: SIAM
ISBN: 1611970725
Category : Mathematics
Languages : en
Pages : 285
Book Description
This revised edition discusses numerical methods for computing the eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method and automatic multilevel substructuring.
An Introduction to Numerical Methods
Author: Abdelwahab Kharab
Publisher: CRC Press
ISBN: 1439868999
Category : Mathematics
Languages : en
Pages : 582
Book Description
Highly recommended by CHOICE, previous editions of this popular textbook offered an accessible and practical introduction to numerical analysis. An Introduction to Numerical Methods: A MATLAB® Approach, Third Edition continues to present a wide range of useful and important algorithms for scientific and engineering applications. The authors use MATLAB to illustrate each numerical method, providing full details of the computer results so that the main steps are easily visualized and interpreted. New to the Third Edition A chapter on the numerical solution of integral equations A section on nonlinear partial differential equations (PDEs) in the last chapter Inclusion of MATLAB GUIs throughout the text The book begins with simple theoretical and computational topics, including computer floating point arithmetic, errors, interval arithmetic, and the root of equations. After presenting direct and iterative methods for solving systems of linear equations, the authors discuss interpolation, spline functions, concepts of least-squares data fitting, and numerical optimization. They then focus on numerical differentiation and efficient integration techniques as well as a variety of numerical techniques for solving linear integral equations, ordinary differential equations, and boundary-value problems. The book concludes with numerical techniques for computing the eigenvalues and eigenvectors of a matrix and for solving PDEs. CD-ROM Resource The accompanying CD-ROM contains simple MATLAB functions that help students understand how the methods work. These functions provide a clear, step-by-step explanation of the mechanism behind the algorithm of each numerical method and guide students through the calculations necessary to understand the algorithm. Written in an easy-to-follow, simple style, this text improves students’ ability to master the theoretical and practical elements of the methods. Through this book, they will be able to solve many numerical problems using MATLAB.
Publisher: CRC Press
ISBN: 1439868999
Category : Mathematics
Languages : en
Pages : 582
Book Description
Highly recommended by CHOICE, previous editions of this popular textbook offered an accessible and practical introduction to numerical analysis. An Introduction to Numerical Methods: A MATLAB® Approach, Third Edition continues to present a wide range of useful and important algorithms for scientific and engineering applications. The authors use MATLAB to illustrate each numerical method, providing full details of the computer results so that the main steps are easily visualized and interpreted. New to the Third Edition A chapter on the numerical solution of integral equations A section on nonlinear partial differential equations (PDEs) in the last chapter Inclusion of MATLAB GUIs throughout the text The book begins with simple theoretical and computational topics, including computer floating point arithmetic, errors, interval arithmetic, and the root of equations. After presenting direct and iterative methods for solving systems of linear equations, the authors discuss interpolation, spline functions, concepts of least-squares data fitting, and numerical optimization. They then focus on numerical differentiation and efficient integration techniques as well as a variety of numerical techniques for solving linear integral equations, ordinary differential equations, and boundary-value problems. The book concludes with numerical techniques for computing the eigenvalues and eigenvectors of a matrix and for solving PDEs. CD-ROM Resource The accompanying CD-ROM contains simple MATLAB functions that help students understand how the methods work. These functions provide a clear, step-by-step explanation of the mechanism behind the algorithm of each numerical method and guide students through the calculations necessary to understand the algorithm. Written in an easy-to-follow, simple style, this text improves students’ ability to master the theoretical and practical elements of the methods. Through this book, they will be able to solve many numerical problems using MATLAB.
Deterministic and Stochastic Error Bounds in Numerical Analysis
Author: Erich Novak
Publisher:
ISBN: 9780387503684
Category : Analyse numérique
Languages : en
Pages : 113
Book Description
In these notes different deterministic and stochastic error bounds of numerical analysis are investigated. For many computational problems we have only partial information (such as n function values) and consequently they can only be solved with uncertainty in the answer. Optimal methods and optimal error bounds are sought if only the type of information is indicated. First, worst case error bounds and their relation to the theory of n-widths are considered; special problems such approximation, optimization, and integration for different function classes are studied and adaptive and nonadaptive methods are compared. Deterministic (worst case) error bounds are often unrealistic and should be complemented by different average error bounds. The error of Monte Carlo methods and the average error of deterministic methods are discussed as are the conceptual difficulties of different average errors. An appendix deals with the existence and uniqueness of optimal methods. This book is an introduction to the area and also a research monograph containing new results. It is addressd to a general mathematical audience as well as specialists in the areas of numerical analysis and approximation theory (especially optimal recovery and information-based complexity).
Publisher:
ISBN: 9780387503684
Category : Analyse numérique
Languages : en
Pages : 113
Book Description
In these notes different deterministic and stochastic error bounds of numerical analysis are investigated. For many computational problems we have only partial information (such as n function values) and consequently they can only be solved with uncertainty in the answer. Optimal methods and optimal error bounds are sought if only the type of information is indicated. First, worst case error bounds and their relation to the theory of n-widths are considered; special problems such approximation, optimization, and integration for different function classes are studied and adaptive and nonadaptive methods are compared. Deterministic (worst case) error bounds are often unrealistic and should be complemented by different average error bounds. The error of Monte Carlo methods and the average error of deterministic methods are discussed as are the conceptual difficulties of different average errors. An appendix deals with the existence and uniqueness of optimal methods. This book is an introduction to the area and also a research monograph containing new results. It is addressd to a general mathematical audience as well as specialists in the areas of numerical analysis and approximation theory (especially optimal recovery and information-based complexity).
Handbook of Numerical Methods for Hyperbolic Problems
Author: Remi Abgrall
Publisher: Elsevier
ISBN: 044463911X
Category : Mathematics
Languages : en
Pages : 612
Book Description
Handbook on Numerical Methods for Hyperbolic Problems: Applied and Modern Issues details the large amount of literature in the design, analysis, and application of various numerical algorithms for solving hyperbolic equations that has been produced in the last several decades. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and become familiar with their relative advantages and limitations. - Provides detailed, cutting-edge background explanations of existing algorithms and their analysis - Presents a method of different algorithms for specific applications and the relative advantages and limitations of different algorithms for engineers or those involved in applications - Written by leading subject experts in each field, the volumes provide breadth and depth of content coverage
Publisher: Elsevier
ISBN: 044463911X
Category : Mathematics
Languages : en
Pages : 612
Book Description
Handbook on Numerical Methods for Hyperbolic Problems: Applied and Modern Issues details the large amount of literature in the design, analysis, and application of various numerical algorithms for solving hyperbolic equations that has been produced in the last several decades. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and become familiar with their relative advantages and limitations. - Provides detailed, cutting-edge background explanations of existing algorithms and their analysis - Presents a method of different algorithms for specific applications and the relative advantages and limitations of different algorithms for engineers or those involved in applications - Written by leading subject experts in each field, the volumes provide breadth and depth of content coverage
Numerical Methods for Nonlinear Estimating Equations
Author: Christopher G. Small
Publisher: OUP Oxford
ISBN: 0191545090
Category : Mathematics
Languages : en
Pages : 324
Book Description
Nonlinearity arises in statistical inference in various ways, with varying degrees of severity, as an obstacle to statistical analysis. More entrenched forms of nonlinearity often require intensive numerical methods to construct estimators, and the use of root search algorithms, or one-step estimators, is a standard method of solution. This book provides a comprehensive study of nonlinear estimating equations and artificial likelihoods for statistical inference. It provides extensive coverage and comparison of hill climbing algorithms, which, when started at points of nonconcavity often have very poor convergence properties, and for additional flexibility proposes a number of modifications to the standard methods for solving these algorithms. The book also extends beyond simple root search algorithms to include a discussion of the testing of roots for consistency, and the modification of available estimating functions to provide greater stability in inference. A variety of examples from practical applications are included to illustrate the problems and possibilities thus making this text ideal for the research statistician and graduate student. This is the latest in the well-established and authoritative Oxford Statistical Science Series, which includes texts and monographs covering many topics of current research interest in pure and applied statistics. Each title has an original slant even if the material included is not specifically original. The authors are leading researchers and the topics covered will be of interest to all professional statisticians, whether they be in industry, government department or research institute. Other books in the series include 23. W.J.Krzanowski: Principles of multivariate analysis: a user's perspective updated edition 24. J.Durbin and S.J.Koopman: Time series analysis by State Space Models 25. Peter J. Diggle, Patrick Heagerty, Kung-Yee Liang, Scott L. Zeger: Analysis of Longitudinal Data 2/e 26. J.K. Lindsey: Nonlinear Models in Medical Statistics 27. Peter J. Green, Nils L. Hjort & Sylvia Richardson: Highly Structured Stochastic Systems 28. Margaret S. Pepe: The Statistical Evaluation of Medical Tests for Classification and Prediction
Publisher: OUP Oxford
ISBN: 0191545090
Category : Mathematics
Languages : en
Pages : 324
Book Description
Nonlinearity arises in statistical inference in various ways, with varying degrees of severity, as an obstacle to statistical analysis. More entrenched forms of nonlinearity often require intensive numerical methods to construct estimators, and the use of root search algorithms, or one-step estimators, is a standard method of solution. This book provides a comprehensive study of nonlinear estimating equations and artificial likelihoods for statistical inference. It provides extensive coverage and comparison of hill climbing algorithms, which, when started at points of nonconcavity often have very poor convergence properties, and for additional flexibility proposes a number of modifications to the standard methods for solving these algorithms. The book also extends beyond simple root search algorithms to include a discussion of the testing of roots for consistency, and the modification of available estimating functions to provide greater stability in inference. A variety of examples from practical applications are included to illustrate the problems and possibilities thus making this text ideal for the research statistician and graduate student. This is the latest in the well-established and authoritative Oxford Statistical Science Series, which includes texts and monographs covering many topics of current research interest in pure and applied statistics. Each title has an original slant even if the material included is not specifically original. The authors are leading researchers and the topics covered will be of interest to all professional statisticians, whether they be in industry, government department or research institute. Other books in the series include 23. W.J.Krzanowski: Principles of multivariate analysis: a user's perspective updated edition 24. J.Durbin and S.J.Koopman: Time series analysis by State Space Models 25. Peter J. Diggle, Patrick Heagerty, Kung-Yee Liang, Scott L. Zeger: Analysis of Longitudinal Data 2/e 26. J.K. Lindsey: Nonlinear Models in Medical Statistics 27. Peter J. Green, Nils L. Hjort & Sylvia Richardson: Highly Structured Stochastic Systems 28. Margaret S. Pepe: The Statistical Evaluation of Medical Tests for Classification and Prediction
Numerical Analysis
Author: Brian Sutton
Publisher: SIAM
ISBN: 1611975700
Category : Mathematics
Languages : en
Pages : 448
Book Description
This textbook develops the fundamental skills of numerical analysis: designing numerical methods, implementing them in computer code, and analyzing their accuracy and efficiency. A number of mathematical problems?interpolation, integration, linear systems, zero finding, and differential equations?are considered, and some of the most important methods for their solution are demonstrated and analyzed. Notable features of this book include the development of Chebyshev methods alongside more classical ones; a dual emphasis on theory and experimentation; the use of linear algebra to solve problems from analysis, which enables students to gain a greater appreciation for both subjects; and many examples and exercises. Numerical Analysis: Theory and Experiments is designed to be the primary text for a junior- or senior-level undergraduate course in numerical analysis for mathematics majors. Scientists and engineers interested in numerical methods, particularly those seeking an accessible introduction to Chebyshev methods, will also be interested in this book.
Publisher: SIAM
ISBN: 1611975700
Category : Mathematics
Languages : en
Pages : 448
Book Description
This textbook develops the fundamental skills of numerical analysis: designing numerical methods, implementing them in computer code, and analyzing their accuracy and efficiency. A number of mathematical problems?interpolation, integration, linear systems, zero finding, and differential equations?are considered, and some of the most important methods for their solution are demonstrated and analyzed. Notable features of this book include the development of Chebyshev methods alongside more classical ones; a dual emphasis on theory and experimentation; the use of linear algebra to solve problems from analysis, which enables students to gain a greater appreciation for both subjects; and many examples and exercises. Numerical Analysis: Theory and Experiments is designed to be the primary text for a junior- or senior-level undergraduate course in numerical analysis for mathematics majors. Scientists and engineers interested in numerical methods, particularly those seeking an accessible introduction to Chebyshev methods, will also be interested in this book.