Numerical and Experimental Study on Turbine Blade Cooling, Turbulent Flow and Surface Heat Transfer

Numerical and Experimental Study on Turbine Blade Cooling, Turbulent Flow and Surface Heat Transfer PDF Author: Liang Guo
Publisher:
ISBN:
Category : Gas-turbines
Languages : en
Pages : 506

Get Book Here

Book Description

Numerical and Experimental Study on Turbine Blade Cooling, Turbulent Flow and Surface Heat Transfer

Numerical and Experimental Study on Turbine Blade Cooling, Turbulent Flow and Surface Heat Transfer PDF Author: Liang Guo
Publisher:
ISBN:
Category : Gas-turbines
Languages : en
Pages : 506

Get Book Here

Book Description


An Experimental Investigation of Turbine Blade Heat Transfer and Turbine Blade Trailing Edge Cooling

An Experimental Investigation of Turbine Blade Heat Transfer and Turbine Blade Trailing Edge Cooling PDF Author: Jungho Choi
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This experimental study contains two points; part 1 - turbine blade heat transfer under low Reynolds number flow conditions, and part 2 - trailing edge cooling and heat transfer. The effect of unsteady wake and free stream turbulence on heat transfer and pressure coefficients of a turbine blade was investigated in low Reynolds number flows. The experiments were performed on a five blade linear cascade in a low speed wind tunnel. A spoked wheel type wake generator and two different turbulence grids were employed to generate different levels of the Strouhal number and turbulence intensity, respectively. The cascade inlet Reynolds number based on blade chord length was varied from 15,700 to 105,000, and the Strouhal number was varied from 0 to 2.96 by changing the rotating wake passing frequency (rod speed) and cascade inlet velocity. A thin foil thermocouple instrumented blade was used to determine the surface heat transfer coefficient. A Liquid crystal technique based on hue value detection was used to measure the heat transfer coefficient on a trailing edge film cooling model and internal model of a gas turbine blade. It was also used to determine the film effectiveness on the trailing edge. For the internal model, Reynolds numbers based on the hydraulic diameter of the exit slot and exit velocity were 5,000, 10,000, 20,000, and 30,000 and corresponding coolant-to-mainstream velocity ratios were 0.3, 0.6, 1.2, and 1.8 for the external models, respectively. The experiments were performed at two different designs and each design has several different models such as staggered / inline exit, straight / tapered entrance, and smooth / rib entrance. The compressed air was used in coolant air. A circular turbulence grid was employed to upstream in the wind tunnel and square ribs were employed in the inlet chamber to generate turbulence intensity externally and internally, respectively.

Measurements of Heat Transfer, Flow, and Pressures in a Simulated Turbine Blade Internal Cooling Passage

Measurements of Heat Transfer, Flow, and Pressures in a Simulated Turbine Blade Internal Cooling Passage PDF Author: Louis M. Russell
Publisher:
ISBN:
Category : Flow visualization
Languages : en
Pages : 30

Get Book Here

Book Description
An experimental study was made to obtain quantitative information on heat transfer, flow, and pressure distribution in a branched duct test section that had several significant features of an internal cooling passage of a turbine blade. The objective of this study was to generate a set of experimental data that could be used for validation of computer codes that would be used to model internal cooling. Surface heat transfer coefficients and entrance flow conditions were measured at nominal entrance Reynolds numbers of 45 000, 335 000, and 726 000. Heat transfer data were obtained by using a steady-state technique in which an Inconel heater sheet is attached to the surface and coated with liquid crystals. Visual and quantitative flow-field data from particle image velocimetry measurements for a plane at midchannel height for a Reynolds number of 45 000 were also obtained. The flow was seeded with polystyrene particles and illuminated by a laser light sheet. Pressure distribution measurements were made both on the surface with discrete holes and in the flow field with a total pressure probe. The flow-field measurements yielded flow-field velocities at selected locations. A relatively new method, pressure sensitive paint, was also used to measure surface pressure distribution. The pressure paint data obtained at Reynolds numbers of 335 000 and 726 000 compared well with the more standard method of measuring pressures by using discrete holes.

Experimental Investigation of the Heat-transfer Characteristics of an Air-cooled Sintered Porous Turbine Blade

Experimental Investigation of the Heat-transfer Characteristics of an Air-cooled Sintered Porous Turbine Blade PDF Author: Louis J. Schafer (Jr.)
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 38

Get Book Here

Book Description


Survey of Advantages and Problems Associated with Transpiration Cooling and Film Cooling of Gas-turbine Blades

Survey of Advantages and Problems Associated with Transpiration Cooling and Film Cooling of Gas-turbine Blades PDF Author: Ernst Rudolf Georg Eckert
Publisher:
ISBN:
Category : Aerodynamics
Languages : en
Pages : 44

Get Book Here

Book Description
Summary: Transpiration and film cooling promise to be effective methods of cooling gas-turbine blades; consequently, analytical and experimental investigations are being conducted to obtain a better understanding of these processes. This report serves as an introduction to these cooling methods, explains the physical processes, and surveys the information available for predicting blade temperatures and heat-transfer rates. In addition, the difficulties encountered in obtaining a uniform blade temperature are discussed, and the possibilities of correcting these difficulties are indicated. Air is the only coolant considered in the application of these cooling methods.

Heat Transfer in Gas Turbines

Heat Transfer in Gas Turbines PDF Author: Bengt Sundén
Publisher: Witpress
ISBN:
Category : Medical
Languages : en
Pages : 544

Get Book Here

Book Description
This title presents and reflects current active research on various heat transfer topics and related phenomena in gas turbine systems. It begins with a general introduction to gas turbine heat transfer, before moving on to specific areas.

Gas Turbine Blade Cooling

Gas Turbine Blade Cooling PDF Author: Chaitanya D Ghodke
Publisher: SAE International
ISBN: 0768095034
Category : Technology & Engineering
Languages : en
Pages : 238

Get Book Here

Book Description
Gas turbines play an extremely important role in fulfilling a variety of power needs and are mainly used for power generation and propulsion applications. The performance and efficiency of gas turbine engines are to a large extent dependent on turbine rotor inlet temperatures: typically, the hotter the better. In gas turbines, the combustion temperature and the fuel efficiency are limited by the heat transfer properties of the turbine blades. However, in pushing the limits of hot gas temperatures while preventing the melting of blade components in high-pressure turbines, the use of effective cooling technologies is critical. Increasing the turbine inlet temperature also increases heat transferred to the turbine blade, and it is possible that the operating temperature could reach far above permissible metal temperature. In such cases, insufficient cooling of turbine blades results in excessive thermal stress on the blades causing premature blade failure. This may bring hazards to the engine's safe operation. Gas Turbine Blade Cooling, edited by Dr. Chaitanya D. Ghodke, offers 10 handpicked SAE International's technical papers, which identify key aspects of turbine blade cooling and help readers understand how this process can improve the performance of turbine hardware.

Gas Turbine Heat Transfer and Cooling Technology, Second Edition

Gas Turbine Heat Transfer and Cooling Technology, Second Edition PDF Author: Je-Chin Han
Publisher: CRC Press
ISBN: 1439855684
Category : Science
Languages : en
Pages : 892

Get Book Here

Book Description
A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.

Numerical Representation of Heat Transfer Into Turbine Blade Cooling Ducts

Numerical Representation of Heat Transfer Into Turbine Blade Cooling Ducts PDF Author: C. Taylor
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Get Book Here

Book Description
A numerical representation of three dimensional turbulent flow within cooling ducts located in turbine blades and heat transfer into such ducts is effected using the finite element method. The importance of a coupled solid/fluid numerical model, when investigating heat transfer, is demonstrated by comparing numerical results with experimentally determined values relating to smooth, cylindrical rotating passages. Having verified the numerical model, the technique is then used to evaluate heat transfer into a multi-ribbed rotating cylindrical duct. The enhancement of heat transfer, due to Coriolis induced secondary motion and the incorporation of ribs, is predicted and compared with experimental measure ments.

An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling

An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling PDF Author: James D. Heidmann
Publisher:
ISBN:
Category :
Languages : en
Pages : 14

Get Book Here

Book Description
Presented at the International Gas Turbine & Aeroengine Congress & Exhibition, Orlando, FL, Jun 2 - Jun 5, 1997.