Numerical Analysis of Systems of Ordinary and Stochastic Differential Equations

Numerical Analysis of Systems of Ordinary and Stochastic Differential Equations PDF Author: S. S. Artemiev
Publisher: Walter de Gruyter
ISBN: 3110944669
Category : Mathematics
Languages : en
Pages : 185

Get Book

Book Description
This text deals with numerical analysis of systems of both ordinary and stochastic differential equations. It covers numerical solution problems of the Cauchy problem for stiff ordinary differential equations (ODE) systems by Rosenbrock-type methods (RTMs).

Numerical Analysis of Systems of Ordinary and Stochastic Differential Equations

Numerical Analysis of Systems of Ordinary and Stochastic Differential Equations PDF Author: S. S. Artemiev
Publisher: Walter de Gruyter
ISBN: 3110944669
Category : Mathematics
Languages : en
Pages : 185

Get Book

Book Description
This text deals with numerical analysis of systems of both ordinary and stochastic differential equations. It covers numerical solution problems of the Cauchy problem for stiff ordinary differential equations (ODE) systems by Rosenbrock-type methods (RTMs).

Numerical Solution of Stochastic Differential Equations

Numerical Solution of Stochastic Differential Equations PDF Author: Peter E. Kloeden
Publisher: Springer Science & Business Media
ISBN: 3662126168
Category : Mathematics
Languages : en
Pages : 666

Get Book

Book Description
The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP

Random Ordinary Differential Equations and Their Numerical Solution

Random Ordinary Differential Equations and Their Numerical Solution PDF Author: Xiaoying Han
Publisher: Springer
ISBN: 981106265X
Category : Mathematics
Languages : en
Pages : 250

Get Book

Book Description
This book is intended to make recent results on the derivation of higher order numerical schemes for random ordinary differential equations (RODEs) available to a broader readership, and to familiarize readers with RODEs themselves as well as the closely associated theory of random dynamical systems. In addition, it demonstrates how RODEs are being used in the biological sciences, where non-Gaussian and bounded noise are often more realistic than the Gaussian white noise in stochastic differential equations (SODEs). RODEs are used in many important applications and play a fundamental role in the theory of random dynamical systems. They can be analyzed pathwise with deterministic calculus, but require further treatment beyond that of classical ODE theory due to the lack of smoothness in their time variable. Although classical numerical schemes for ODEs can be used pathwise for RODEs, they rarely attain their traditional order since the solutions of RODEs do not have sufficient smoothness to have Taylor expansions in the usual sense. However, Taylor-like expansions can be derived for RODEs using an iterated application of the appropriate chain rule in integral form, and represent the starting point for the systematic derivation of consistent higher order numerical schemes for RODEs. The book is directed at a wide range of readers in applied and computational mathematics and related areas as well as readers who are interested in the applications of mathematical models involving random effects, in particular in the biological sciences.The level of this book is suitable for graduate students in applied mathematics and related areas, computational sciences and systems biology. A basic knowledge of ordinary differential equations and numerical analysis is required.

Applied Stochastic Differential Equations

Applied Stochastic Differential Equations PDF Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327

Get Book

Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Numerical Methods for Ordinary Differential Equations

Numerical Methods for Ordinary Differential Equations PDF Author: David F. Griffiths
Publisher: Springer Science & Business Media
ISBN: 0857291483
Category : Mathematics
Languages : en
Pages : 274

Get Book

Book Description
Numerical Methods for Ordinary Differential Equations is a self-contained introduction to a fundamental field of numerical analysis and scientific computation. Written for undergraduate students with a mathematical background, this book focuses on the analysis of numerical methods without losing sight of the practical nature of the subject. It covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples. Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors. The book covers key foundation topics: o Taylor series methods o Runge--Kutta methods o Linear multistep methods o Convergence o Stability and a range of modern themes: o Adaptive stepsize selection o Long term dynamics o Modified equations o Geometric integration o Stochastic differential equations The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com

Numerical Integration of Stochastic Differential Equations

Numerical Integration of Stochastic Differential Equations PDF Author: G.N. Milstein
Publisher: Springer Science & Business Media
ISBN: 9401584559
Category : Computers
Languages : en
Pages : 178

Get Book

Book Description
This book is devoted to mean-square and weak approximations of solutions of stochastic differential equations (SDE). These approximations represent two fundamental aspects in the contemporary theory of SDE. Firstly, the construction of numerical methods for such systems is important as the solutions provided serve as characteristics for a number of mathematical physics problems. Secondly, the employment of probability representations together with a Monte Carlo method allows us to reduce the solution of complex multidimensional problems of mathematical physics to the integration of stochastic equations. Along with a general theory of numerical integrations of such systems, both in the mean-square and the weak sense, a number of concrete and sufficiently constructive numerical schemes are considered. Various applications and particularly the approximate calculation of Wiener integrals are also dealt with. This book is of interest to graduate students in the mathematical, physical and engineering sciences, and to specialists whose work involves differential equations, mathematical physics, numerical mathematics, the theory of random processes, estimation and control theory.

Stochastic Numerical Methods

Stochastic Numerical Methods PDF Author: Raúl Toral
Publisher: John Wiley & Sons
ISBN: 3527683127
Category : Science
Languages : en
Pages : 518

Get Book

Book Description
Stochastic Numerical Methods introduces at Master level the numerical methods that use probability or stochastic concepts to analyze random processes. The book aims at being rather general and is addressed at students of natural sciences (Physics, Chemistry, Mathematics, Biology, etc.) and Engineering, but also social sciences (Economy, Sociology, etc.) where some of the techniques have been used recently to numerically simulate different agent-based models. Examples included in the book range from phase-transitions and critical phenomena, including details of data analysis (extraction of critical exponents, finite-size effects, etc.), to population dynamics, interfacial growth, chemical reactions, etc. Program listings are integrated in the discussion of numerical algorithms to facilitate their understanding. From the contents: Review of Probability Concepts Monte Carlo Integration Generation of Uniform and Non-uniform Random Numbers: Non-correlated Values Dynamical Methods Applications to Statistical Mechanics Introduction to Stochastic Processes Numerical Simulation of Ordinary and Partial Stochastic Differential Equations Introduction to Master Equations Numerical Simulations of Master Equations Hybrid Monte Carlo Generation of n-Dimensional Correlated Gaussian Variables Collective Algorithms for Spin Systems Histogram Extrapolation Multicanonical Simulations

An Introduction to the Numerical Simulation of Stochastic Differential Equations

An Introduction to the Numerical Simulation of Stochastic Differential Equations PDF Author: Desmond J. Higham
Publisher: SIAM
ISBN: 161197643X
Category : Mathematics
Languages : en
Pages : 293

Get Book

Book Description
This book provides a lively and accessible introduction to the numerical solution of stochastic differential equations with the aim of making this subject available to the widest possible readership. It presents an outline of the underlying convergence and stability theory while avoiding technical details. Key ideas are illustrated with numerous computational examples and computer code is listed at the end of each chapter. The authors include 150 exercises, with solutions available online, and 40 programming tasks. Although introductory, the book covers a range of modern research topics, including Itô versus Stratonovich calculus, implicit methods, stability theory, nonconvergence on nonlinear problems, multilevel Monte Carlo, approximation of double stochastic integrals, and tau leaping for chemical and biochemical reaction networks. An Introduction to the Numerical Simulation of Stochastic Differential Equations is appropriate for undergraduates and postgraduates in mathematics, engineering, physics, chemistry, finance, and related disciplines, as well as researchers in these areas. The material assumes only a competence in algebra and calculus at the level reached by a typical first-year undergraduate mathematics class, and prerequisites are kept to a minimum. Some familiarity with basic concepts from numerical analysis and probability is also desirable but not necessary.

Numerical Analysis of Ordinary and Delay Differential Equations

Numerical Analysis of Ordinary and Delay Differential Equations PDF Author: Taketomo Mitsui
Publisher: Springer Nature
ISBN: 9811992630
Category : Mathematics
Languages : en
Pages : 118

Get Book

Book Description
This book serves as a concise textbook for students in an advanced undergraduate or first-year graduate course in various disciplines such as applied mathematics, control, and engineering, who want to understand the modern standard of numerical methods of ordinary and delay differential equations. Experts in the same fields can also learn about the recent developments in numerical analysis of such differential systems. Ordinary differential equations (ODEs) provide a strong mathematical tool to express a wide variety of phenomena in science and engineering. Along with its own significance, one of the powerful directions toward which ODEs extend is to incorporate an unknown function with delayed argument. This is called delay differential equations (DDEs), which often appear in mathematical modelling of biology, demography, epidemiology, and control theory. In some cases, the solution of a differential equation can be obtained by algebraic combinations of known mathematical functions. In many practical cases, however, such a solution is quite difficult or unavailable, and numerical approximations are called for. Modern development of computers accelerates the situation and, moreover, launches more possibilities of numerical means. Henceforth, the knowledge and expertise of the numerical solution of differential equations becomes a requirement in broad areas of science and engineering. One might think that a well-organized software package such as MATLAB serves much the same solution. In a sense, this is true; but it must be kept in mind that blind employment of software packages misleads the user. The gist of numerical solution of differential equations still must be learned. The present book is intended to provide the essence of numerical solutions of ordinary differential equations as well as of delay differential equations. Particularly, the authors noted that there are still few concise textbooks of delay differential equations, and then they set about filling the gap through descriptions as transparent as possible. Major algorithms of numerical solution are clearly described in this book. The stability of solutions of ODEs and DDEs is crucial as well. The book introduces the asymptotic stability of analytical and numerical solutions and provides a practical way to analyze their stability by employing a theory of complex functions.

The Numerical Analysis of Ordinary Differential Equations

The Numerical Analysis of Ordinary Differential Equations PDF Author: John Charles Butcher
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 538

Get Book

Book Description
Mathematical and computational introduction. The Euler method and its generalizations. Analysis of Runge-Kutta methods. General linear methods.