Novel Design and Synthesis of Nanostructured Electrode Materials for Advanced Lithium Ion Batteries

Novel Design and Synthesis of Nanostructured Electrode Materials for Advanced Lithium Ion Batteries PDF Author: Zhiqiang Xie
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

Novel Design and Synthesis of Nanostructured Electrode Materials for Advanced Lithium Ion Batteries

Novel Design and Synthesis of Nanostructured Electrode Materials for Advanced Lithium Ion Batteries PDF Author: Zhiqiang Xie
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Lithium-Ion Batteries

Lithium-Ion Batteries PDF Author: Xianxia Yuan
Publisher: CRC Press
ISBN: 1439841284
Category : Technology & Engineering
Languages : en
Pages : 431

Get Book Here

Book Description
Written by a group of top scientists and engineers in academic and industrial R&D, Lithium-Ion Batteries: Advanced Materials and Technologies gives a clear picture of the current status of these highly efficient batteries. Leading international specialists from universities, government laboratories, and the lithium-ion battery industry share their knowledge and insights on recent advances in the fundamental theories, experimental methods, and research achievements of lithium-ion battery technology. Along with coverage of state-of-the-art manufacturing processes, the book focuses on the technical progress and challenges of cathode materials, anode materials, electrolytes, and separators. It also presents numerical modeling and theoretical calculations, discusses the design of safe and powerful lithium-ion batteries, and describes approaches for enhancing the performance of next-generation lithium-ion battery technology. Due to their high energy density, high efficiency, superior rate capability, and long cycling life, lithium-ion batteries provide a solution to the increasing demands for both stationary and mobile power. With comprehensive and up-to-date information on lithium-ion battery principles, experimental research, numerical modeling, industrial manufacturing, and future prospects, this volume will help you not only select existing materials and technologies but also develop new ones to improve battery performance.

Synthesis of Functional Nanomaterials for Electrochemical Energy Storage

Synthesis of Functional Nanomaterials for Electrochemical Energy Storage PDF Author: Huan Pang
Publisher: Springer Nature
ISBN: 9811373728
Category : Science
Languages : en
Pages : 224

Get Book Here

Book Description
This book provides a comprehensive review of functional nanomaterials for electrochemical applications, presenting interesting examples of nanomaterials with different dimensions and their applications in electrochemical energy storage. It also discusses the synthesis of functional nanomaterials, including quantum dots; one-dimensional, two-dimensional and three-dimensional nanostructures; and advanced nanocomposites. Highlighting recent advances in current electrochemical energy storage hotpots: lithium batteries, lithium-ion batteries, sodium-ion batteries, other metal-ion batteries, halogen ion batteries, and metal–gas batteries, this book will appeal to readers in the various fields of chemistry, material science and engineering.

Nanostructured Materials for Next-Generation Energy Storage and Conversion

Nanostructured Materials for Next-Generation Energy Storage and Conversion PDF Author: Qiang Zhen
Publisher: Springer Nature
ISBN: 3662586754
Category : Technology & Engineering
Languages : en
Pages : 472

Get Book Here

Book Description
Volume 3 of a 4-volume series is a concise, authoritative and an eminently readable and enjoyable experience related to lithium ion battery design, characterization and usage for portable and stationary power. Although the major focus is on lithium metal oxides or transition metal oxide as alloys, the discussion of fossil fuels is also presented where appropriate. This monograph is written by recognized experts in the field, and is both timely and appropriate as this decade will see application of lithium as an energy carrier, for example in the transportation sector. This Volume focuses on the fundamentals related to batteries using the latest research in the field of battery physics, chemistry, and electrochemistry. The research summarised in this book by leading experts is laid out in an easy-to-understand format to enable the layperson to grasp the essence of the technology, its pitfalls and current challenges in high-power Lithium battery research. After introductory remarks on policy and battery safety, a series of monographs are offered related to fundamentals of lithium batteries, including, theoretical modeling, simulation and experimental techniques used to characterize electrode materials, both at the material composition, and also at the device level. The different properties specific to each component of the batteries are discussed in order to offer tradeoffs between power and energy density, energy cycling, safety and where appropriate end-of-life disposal. Parameters affecting battery performance and cost, longevity using newer metal oxides, different electrolytes are also reviewed in the context of safety concerns and in relation to the solid-electrolyte interface. Separators, membranes, solid-state electrolytes, and electrolyte additives are also reviewed in light of safety, recycling, and high energy endurance issues. The book is intended for a wide audience, such as scientists who are new to the field, practitioners, as well as students in the STEM and STEP fields, as well as students working on batteries. The sections on safety and policy would be of great interest to engineers and technologists who want to obtain a solid grounding in the fundamentals of battery science arising from the interaction of electrochemistry, solid-state materials science, surfaces, and interfaces.

Advanced Battery Materials

Advanced Battery Materials PDF Author: Chunwen Sun
Publisher: John Wiley & Sons
ISBN: 1119407702
Category : Technology & Engineering
Languages : en
Pages : 654

Get Book Here

Book Description
This book details the latest R&D in electrochemical energy storage technologies for portable electronics and electric vehicle applications. During the past three decades, great progress has been made in R & D of various batteries in terms of energy density increase and cost reduction. One of the biggest challenges is increasing the energy density to achieve longer endurance time. In this book, recent research and development in advanced electrode materials for electrochemical energy storage devices is covered. Topics covered in this important book include: Carbon anode materials for sodium-ion batteries Lithium titanate-based lithium-ion batteries Rational material design and performance optimization of transition metal oxide-based lithium ion battery anodes Effects of graphene on the electrochemical properties of the electrode of lithium ion batteries Silicon-based lithium-ion battery anodes Mo-based anode materials for alkali metal ion batteries Lithium-sulfur batteries Graphene in Lithium-Ion/Lithium-Sulfur Batteries Graphene-ionic liquid supercapacitors Battery electrodes based on carbon species and conducting polymers Doped graphene for electrochemical energy storage systems Processing of graphene oxide for enhanced electrical properties

Nanostructures and Nanomaterials for Batteries

Nanostructures and Nanomaterials for Batteries PDF Author: Yu-Guo Guo
Publisher: Springer
ISBN: 9811362335
Category : Technology & Engineering
Languages : en
Pages : 379

Get Book Here

Book Description
This book discusses the roles of nanostructures and nanomaterials in the development of battery materials for state-of-the-art electrochemical energy storage systems, and provides detailed insights into the fundamentals of why batteries need nanostructures and nanomaterials. It explores the advantages offered by nanostructure electrode materials, the challenges of using nanostructured materials in batteries, as well as the rational design of nanostructures and nanomaterials to achieve optimal battery performance. Further, it closely examines the latest advances in the application of nanostructures and nanomaterials for future rechargeable batteries, including high-energy and high-power lithium ion batteries, lithium metal batteries (Li-O2, Li-S, Li-Se, etc.), all-solid-state batteries, and other metal batteries (Na, Mg, Al, etc.). It is a valuable reference resource for readers interested in or involved in research on energy storage, energy materials, electrochemistry and nanotechnology.

Design and Synthesis of Nanostructured Materials for Flexible Lithium-Ion Battery

Design and Synthesis of Nanostructured Materials for Flexible Lithium-Ion Battery PDF Author: Xing Lu
Publisher:
ISBN:
Category :
Languages : en
Pages : 107

Get Book Here

Book Description
In recent years, continuous progress in electronic devices, especially in wearable devices, has attracted surging attention from the consumer market. Therefore, flexible energy storage was developed to fulfill the needs of new flexible devices with ultra-lightweight and small volume. The very recent products and concepts such as touch screens, roll-up displays, wearable sensors, and even implantable medical devices have shown great potential in flexible applications because of their extreme convenience. However, the development of corresponding power sources largely lags behind these emerging technologies of flexible devices. Lithium-ion batteries (LIBs), owing to high energy density and high operating voltage, have been serving as an ideal power source for flexible devices. Nevertheless, direct implementation of commercial LIBs leads to irreversible deformation of structural integrity, short-circuiting or even severe explosion hazard. Such dilemma originates from the poor flexibility of electrode and electrolyte. For electrode side, current electrode sheets used in LIBs are manufactured by holding active material particles and conductive agents by a small weight fraction of polymeric binders. Such fragile electrode structure could easily lose electrical contact under physical deformation, leading to disintegrated electrode sheets, drastic degradations of electrochemical performance, and even safety issue due to internal short-circuiting. For electrolyte side, LIBs employ nonaqueous liquid electrolyte with high ionic conductivity and excellent electrode wettability. However, the drawbacks of such electrolyte system are also evident: poor ion selectivity, flammability, and leakage issue while being deformed render unsuitability of liquid electrolyte for flexible device application. To fabricate flexible LIBs, the current state-of-the-art research employs two design strategies involving electrode structure. One popular strategy is constructing scaffolding structure using carbonaceous materials to function as supportive matrix for active materials. Given carbon nanotubes (CNTs) as an example, the CNTs possess remarkable electrical conductivity and mechanical strength (elastic modulus: 1 TPa, tensile strength: 100 GPa), which contribute to conductive and flexible electrodes as the high-aspect ratio of CNTs can serve as threading materials. Another strategy is rational architecture design of active materials that are conventionally particulate. For example, vanadium pentoxide nanowires can be readily fabricated into free-standing and binder-free electrode membrane. Nevertheless, the most of strategies above still fall short of practicality due to reduced portion of active materials and consequently compromised energy density. In comparison with the mobile liquid electrolyte, the emerging solid-state electrolytes could largely solve circumventing issues of ion selectivity, flammability and leakage. As one prevailing category, solid polymer electrolytes comprising polymers and lithium salts feature decent manufacturing flexibility. Meanwhile, their poor ionic conductivity (10 8 ~ 10 5S cm 1) could be ameliorated by gel polymer electrolytes with organic solvents (plasticizers) and/or inorganic solid fillers (e.g., SiO2). Nevertheless, the non-conductive fillers block ion-transport pathways while allow partial electrical conduction, limiting the interfacial engineering and compatibility with electrodes. In this dissertation, we tackle the aforementioned critical issues of flexible batteries in two aspects. Firstly, we design and synthesize flexible electrode from prospective of material and architecture. A novel cathode constructed by entangling networks of V2O5, CNTs and polytetrafluoroethylene (PTFE) is design and fabricated. Notably, the resulting flexible battery simultaneously achieves excellent mechanical strength (800 MPa young's module), superior cycle durability (86% retention after 1000 times bending) and intriguing capacity (300 mAh g-1 at 0.25C). Furthermore, a Zr-based metal-organic framework (MOF) possessing open-metal sites (OMSs) was used as the microporous filler to facilitate cation (Li+) conduction in GPL. Compared with the state-of-the-art research, our work significantly enhanced tLi+ of GLP from 0.39 up to 0.66 while maintained 1.5 mS cm 1 ionic conductivity. Notably, a reduced thermal activation energy (from 113 to 76 meV) was observed, suggesting diffusion energy barriers was eased by selective promotion of Li+ conduction. To conclude, flexible Li-ion batterie system research is still at early developing stage. Above work provides rational design and improvement of the current FLIBs system in rather facile and cost-effective way. The methodology we proposed are hoped to bring further innovation toward FLIBs field and be extended to numerous applications in the future.

Nanomaterials in Advanced Batteries and Supercapacitors

Nanomaterials in Advanced Batteries and Supercapacitors PDF Author: Kenneth I. Ozoemena
Publisher: Springer
ISBN: 3319260820
Category : Technology & Engineering
Languages : en
Pages : 576

Get Book Here

Book Description
This book provides an authoritative source of information on the use of nanomaterials to enhance the performance of existing electrochemical energy storage systems and the manners in which new such systems are being made possible. The book covers the state of the art of the design, preparation, and engineering of nanoscale functional materials as effective catalysts and as electrodes for electrochemical energy storage and mechanistic investigation of electrode reactions. It also provides perspectives and challenges for future research. A related book by the same editors is: Nanomaterials for Fuel Cell Catalysis.

Nanostructured Materials Engineering and Characterization for Battery Applications

Nanostructured Materials Engineering and Characterization for Battery Applications PDF Author: Amadou Belal Gueye
Publisher: Elsevier
ISBN: 0323914217
Category : Technology & Engineering
Languages : en
Pages : 715

Get Book Here

Book Description
Nanostructured Materials Engineering and Characterization for Battery Applications is designed to help solve fundamental and applied problems in the field of energy storage. Broken up into four separate sections, the book begins with a discussion of the fundamental electrochemical concepts in the field of energy storage. Other sections look at battery materials engineering such as cathodes, electrolytes, separators and anodes and review various battery characterization methods and their applications. The book concludes with a review of the practical considerations and applications of batteries.This will be a valuable reference source for university professors, researchers, undergraduate and postgraduate students, as well as scientists working primarily in the field of materials science, applied chemistry, applied physics and nanotechnology. Presents practical consideration for battery usage such as LCA, recycling and green batteries Covers battery characterization techniques including electrochemical methods, microscopy, spectroscopy and X-ray methods Explores battery models and computational materials design theories

Synthesis and Characterization of Nanostructured Electrode Materials for Rechargeable Lithium Ion Batteries

Synthesis and Characterization of Nanostructured Electrode Materials for Rechargeable Lithium Ion Batteries PDF Author: Min Sik Park
Publisher:
ISBN:
Category : Anodes
Languages : en
Pages : 252

Get Book Here

Book Description