Notes on Counting: An Introduction to Enumerative Combinatorics

Notes on Counting: An Introduction to Enumerative Combinatorics PDF Author: Peter J. Cameron
Publisher: Cambridge University Press
ISBN: 1108417361
Category : Mathematics
Languages : en
Pages : 235

Get Book Here

Book Description
An introduction to enumerative combinatorics, vital to many areas of mathematics. It is suitable as a class text or for individual study.

Notes on Counting: An Introduction to Enumerative Combinatorics

Notes on Counting: An Introduction to Enumerative Combinatorics PDF Author: Peter J. Cameron
Publisher: Cambridge University Press
ISBN: 1108417361
Category : Mathematics
Languages : en
Pages : 235

Get Book Here

Book Description
An introduction to enumerative combinatorics, vital to many areas of mathematics. It is suitable as a class text or for individual study.

Introduction to Enumerative and Analytic Combinatorics

Introduction to Enumerative and Analytic Combinatorics PDF Author: Miklos Bona
Publisher: CRC Press
ISBN: 1482249103
Category : Computers
Languages : en
Pages : 555

Get Book Here

Book Description
Introduction to Enumerative and Analytic Combinatorics fills the gap between introductory texts in discrete mathematics and advanced graduate texts in enumerative combinatorics. The book first deals with basic counting principles, compositions and partitions, and generating functions. It then focuses on the structure of permutations, graph enumerat

Enumerative Combinatorics: Volume 1

Enumerative Combinatorics: Volume 1 PDF Author: Richard P. Stanley
Publisher: Cambridge University Press
ISBN: 1107015421
Category : Mathematics
Languages : en
Pages : 641

Get Book Here

Book Description
Richard Stanley's two-volume basic introduction to enumerative combinatorics has become the standard guide to the topic for students and experts alike. This thoroughly revised second edition of Volume 1 includes ten new sections and more than 300 new exercises, most with solutions, reflecting numerous new developments since the publication of the first edition in 1986. The author brings the coverage up to date and includes a wide variety of additional applications and examples, as well as updated and expanded chapter bibliographies. Many of the less difficult new exercises have no solutions so that they can more easily be assigned to students. The material on P-partitions has been rearranged and generalized; the treatment of permutation statistics has been greatly enlarged; and there are also new sections on q-analogues of permutations, hyperplane arrangements, the cd-index, promotion and evacuation and differential posets.

Combinatorics: The Art of Counting

Combinatorics: The Art of Counting PDF Author: Bruce E. Sagan
Publisher: American Mathematical Soc.
ISBN: 1470460327
Category : Education
Languages : en
Pages : 328

Get Book Here

Book Description
This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.

Notes on Introductory Combinatorics

Notes on Introductory Combinatorics PDF Author: George Polya
Publisher: Springer Science & Business Media
ISBN: 1475711018
Category : Science
Languages : en
Pages : 202

Get Book Here

Book Description
In the winter of 1978, Professor George P61ya and I jointly taught Stanford University's introductory combinatorics course. This was a great opportunity for me, as I had known of Professor P61ya since having read his classic book, How to Solve It, as a teenager. Working with P6lya, who ·was over ninety years old at the time, was every bit as rewarding as I had hoped it would be. His creativity, intelligence, warmth and generosity of spirit, and wonderful gift for teaching continue to be an inspiration to me. Combinatorics is one of the branches of mathematics that play a crucial role in computer sCience, since digital computers manipulate discrete, finite objects. Combinatorics impinges on computing in two ways. First, the properties of graphs and other combinatorial objects lead directly to algorithms for solving graph-theoretic problems, which have widespread application in non-numerical as well as in numerical computing. Second, combinatorial methods provide many analytical tools that can be used for determining the worst-case and expected performance of computer algorithms. A knowledge of combinatorics will serve the computer scientist well. Combinatorics can be classified into three types: enumerative, eXistential, and constructive. Enumerative combinatorics deals with the counting of combinatorial objects. Existential combinatorics studies the existence or nonexistence of combinatorial configurations.

Handbook of Enumerative Combinatorics

Handbook of Enumerative Combinatorics PDF Author: Miklos Bona
Publisher: CRC Press
ISBN: 1482220865
Category : Mathematics
Languages : en
Pages : 1073

Get Book Here

Book Description
Presenting the state of the art, the Handbook of Enumerative Combinatorics brings together the work of today's most prominent researchers. The contributors survey the methods of combinatorial enumeration along with the most frequent applications of these methods.This important new work is edited by Miklos Bona of the University of Florida where he

How to Count

How to Count PDF Author: R.B.J.T. Allenby
Publisher: CRC Press
ISBN: 1420082612
Category : Mathematics
Languages : en
Pages : 440

Get Book Here

Book Description
Emphasizes a Problem Solving Approach A first course in combinatorics Completely revised, How to Count: An Introduction to Combinatorics, Second Edition shows how to solve numerous classic and other interesting combinatorial problems. The authors take an easily accessible approach that introduces problems before leading into the theory involved. Although the authors present most of the topics through concrete problems, they also emphasize the importance of proofs in mathematics. New to the Second Edition This second edition incorporates 50 percent more material. It includes seven new chapters that cover occupancy problems, Stirling and Catalan numbers, graph theory, trees, Dirichlet’s pigeonhole principle, Ramsey theory, and rook polynomials. This edition also contains more than 450 exercises. Ideal for both classroom teaching and self-study, this text requires only a modest amount of mathematical background. In an engaging way, it covers many combinatorial tools, such as the inclusion-exclusion principle, generating functions, recurrence relations, and Pólya’s counting theorem.

Combinatorics and Number Theory of Counting Sequences

Combinatorics and Number Theory of Counting Sequences PDF Author: Istvan Mezo
Publisher: CRC Press
ISBN: 1351346385
Category : Computers
Languages : en
Pages : 499

Get Book Here

Book Description
Combinatorics and Number Theory of Counting Sequences is an introduction to the theory of finite set partitions and to the enumeration of cycle decompositions of permutations. The presentation prioritizes elementary enumerative proofs. Therefore, parts of the book are designed so that even those high school students and teachers who are interested in combinatorics can have the benefit of them. Still, the book collects vast, up-to-date information for many counting sequences (especially, related to set partitions and permutations), so it is a must-have piece for those mathematicians who do research on enumerative combinatorics. In addition, the book contains number theoretical results on counting sequences of set partitions and permutations, so number theorists who would like to see nice applications of their area of interest in combinatorics will enjoy the book, too. Features The Outlook sections at the end of each chapter guide the reader towards topics not covered in the book, and many of the Outlook items point towards new research problems. An extensive bibliography and tables at the end make the book usable as a standard reference. Citations to results which were scattered in the literature now become easy, because huge parts of the book (especially in parts II and III) appear in book form for the first time.

Introduction to Enumerative Combinatorics

Introduction to Enumerative Combinatorics PDF Author: Miklós Bóna
Publisher: McGraw-Hill Science/Engineering/Math
ISBN:
Category : Mathematics
Languages : en
Pages : 552

Get Book Here

Book Description
Written by one of the leading authors and researchers in the field, this comprehensive modern text offers a strong focus on enumeration, a vitally important area in introductory combinatorics crucial for further study in the field. Miklós Bóna's text fills the gap between introductory textbooks in discrete mathematics and advanced graduate textbooks in enumerative combinatorics, and is one of the very first intermediate-level books to focus on enumerative combinatorics. The text can be used for an advanced undergraduate course by thoroughly covering the chapters in Part I on basic enumeration and by selecting a few special topics, or for an introductory graduate course by concentrating on the main areas of enumeration discussed in Part II. The special topics of Part III make the book suitable for a reading course. This text is part of the Walter Rudin Student Series in Advanced Mathematics.

Constructive Combinatorics

Constructive Combinatorics PDF Author: Dennis Stanton
Publisher: Springer Science & Business Media
ISBN: 1461249686
Category : Mathematics
Languages : en
Pages : 194

Get Book Here

Book Description
The notes that eventually became this book were written between 1977 and 1985 for the course called Constructive Combinatorics at the University of Minnesota. This is a one-quarter (10 week) course for upper level undergraduate students. The class usually consists of mathematics and computer science majors, with an occasional engineering student. Several graduate students in computer science also attend. At Minnesota, Constructive Combinatorics is the third quarter of a three quarter sequence. The fIrst quarter, Enumerative Combinatorics, is at the level of the texts by Bogart [Bo], Brualdi [Br], Liu [Li] or Tucker [Tu] and is a prerequisite for this course. The second quarter, Graph Theory and Optimization, is not a prerequisite. We assume that the students are familiar with the techniques of enumeration: basic counting principles, generating functions and inclusion/exclusion. This course evolved from a course on combinatorial algorithms. That course contained a mixture of graph algorithms, optimization and listing algorithms. The computer assignments generally consisted of testing algorithms on examples. While we felt that such material was useful and not without mathematical content, we did not think that the course had a coherent mathematical focus. Furthermore, much of it was being taught, or could have been taught, elsewhere. Graph algorithms and optimization, for instance, were inserted into the graph theory course where they naturally belonged. The computer science department already taught some of the material: the simpler algorithms in a discrete mathematics course; effIciency of algorithms in a more advanced course.